Skip to main content

Advertisement

Log in

Microstructure and properties of Al–70Si alloy prepared by laser cladding

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, Al–70Si alloy was prepared by laser cladding. The effect of microstructure on the mechanical and thermo-physical properties was elucidated by comparing specimens prepared by laser cladding and casting methods. It is found that the laser cladding process can effectively reduce the formation of coarse primary silicon, which inevitably occurs in large quantities in cast samples. Therefore, various properties have been significantly improved. The tensile strength reaches 85 MPa, the thermal conductivity at room temperature is 76.6 W/(m·K), and the coefficient of thermal expansion (CTE) is 8.19 × 10−6/K. In addition, the solid solution treatment is able to spheroidize the primary silicon and passivate the sharp corners. The change in Si phase morphology can greatly reduce stress concentration and increase the degree of interfacial bonding. This resulted in an increase in tensile strength and thermal conductivity of 50.7% and 42.2%, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.D. Jia, P. Ma, K.G. Prashanth, G. Wang, J. Yi, S. Scudino, F.Y. Cao, J.F. Sun, J. Eckert, Microstructure and thermal expansion behavior of Al–50Si synthesized by selective laser melting. J. Alloys Compd. 699, 548 (2017). https://doi.org/10.1016/j.jallcom.2016.12.429

    Article  CAS  Google Scholar 

  2. L. Zhang, S. Chen, Q. Li, G. Chang, Formation mechanism and conditions of fine primary silicon being uniformly distributed on single αAl matrix in Al–Si alloys. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108853

    Article  Google Scholar 

  3. D.T. Arunkumar, K.G. Basavakumar, S. Sujai, S.S. Prabu, Influences of P and Sr on microstructure and its effects on machinability and mechanical properties of hypereutectic Al–20%Si. Surf. Rev. Lett. (2023). https://doi.org/10.1142/s0218625x23500233

    Article  Google Scholar 

  4. E. Fracchia, F.S. Gobber, M. Rosso, Effect of alloying elements on the Sr modification of Al–Si cast alloys. Metals (2021). https://doi.org/10.3390/met11020342

    Article  Google Scholar 

  5. Z. Cai, C. Zhang, R. Wang, C. Peng, K. Qiu, Y. Feng, Preparation of Al–Si alloys by a rapid solidification and powder metallurgy route. Mater. Des. 87, 996 (2015). https://doi.org/10.1016/j.matdes.2015.08.106

    Article  CAS  Google Scholar 

  6. W. Li, Z.H. Chen, D. Chen, J. Teng, C. Fan, Low-cycle fatigue behavior of SiCp/Al–Si composites produced by spray deposition. Mater. Sci. Eng. A 527(29–30), 7631 (2010). https://doi.org/10.1016/j.msea.2010.08.017

    Article  CAS  Google Scholar 

  7. T.T. Saravanan, M. Kamaraj, S.C. Sharma, S. Anoop, S.K. Manwatkar, K.V. Ravikanth, A. Venugopal, S. Kumaran, Influence of characteristic eutectic free microstructure on mechanical and corrosion response of spark plasma sintered hypereutectic Al–Si alloy. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.131104

    Article  Google Scholar 

  8. C. Gao, L. Niu, J. Ma, Y. An, Y. Hu, L. Yang, G. Chen, Y. Wang, Al-50wt%Si alloy by spark plasma sintering (SPS) for electronic packaging materials. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37(3), 500–506 (2022). https://doi.org/10.1007/s11595-022-2557-4

    Article  CAS  Google Scholar 

  9. T. Hanemann, L.N. Carter, M. Habschied, N.J.E. Adkins, M.M. Attallah, M. Heilmaier, In-situ alloying of AlSi10Mg+Si using selective laser melting to control the coefficient of thermal expansion. J. Alloys Compd. 795, 8 (2019). https://doi.org/10.1016/j.jallcom.2019.04.260

    Article  CAS  Google Scholar 

  10. L. Zhu, S. Wang, H. Pan, C. Yuan, X. Chen, Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J. Manuf. Process. 49, 344–354 (2020). https://doi.org/10.1016/j.jmapro.2019.12.009

    Article  Google Scholar 

  11. L. Zhu, S. Wang, H. Lu, D. Qi, D. Wang, Z. Yang, J. Ning, Y. Dun, P. Xue, P. Xu, B. Xin, Investigation on synergism between additive and subtractive manufacturing for curved thin-walled structure. Virt. Phys. Prototyp. 17(2), 220–238 (2022). https://doi.org/10.1080/17452759.2022.2029009

    Article  Google Scholar 

  12. L. Zhu, Z. Yang, B. Xin, S. Wang, G. Meng, J. Ning, P. Xue, Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.126964

    Article  Google Scholar 

  13. Z. Yang, S. Wang, L. Zhu, J. Ning, B. Xin, Y. Dun, W. Yan, Manipulating molten pool dynamics during metal 3D printing by ultrasound. Appl. Phys. Rev. 9, 021416 (2022). https://doi.org/10.1063/5.0082461

    Article  CAS  Google Scholar 

  14. R. Rumman, M. Manjaiah, S. Touzé, R.A. Sims, J.Y. Hascoët, J.S. Quinton, Characterization of Al–12Si thin-wall properties fabricated with laser direct energy deposition. Sustainability 15, 12806 (2023). https://doi.org/10.3390/su151712806

    Article  CAS  Google Scholar 

  15. Y.D. Jia, L.B. Zhang, P. Ma, S. Scudino, G. Wang, J. Yi, J. Eckert, K.G. Prashanth, Thermal expansion behavior of Al–xSi alloys fabricated using selective laser melting. Prog. Addit. Manuf. 5(3), 247 (2020). https://doi.org/10.1007/s40964-020-00130-w

    Article  Google Scholar 

  16. N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting. Mater. Des. 99, 120 (2016). https://doi.org/10.1016/j.matdes.2016.03.053

    Article  CAS  Google Scholar 

  17. T. Tarasova, G. Gvozdeva, R. Ableyeva, Aluminium matrix composites produced by laser based additive manufacturing. Mater. Today: Proc. 11, 305 (2019). https://doi.org/10.1016/j.matpr.2018.12.149

    Article  CAS  Google Scholar 

  18. C.-S. Park, C.-H. Kim, M.-H. Kim, C. Lee, The effect of particle size and volume fraction of the reinforced phases on the linear thermal expansion in the Al–Si–SiCp system. Mater. Chem. Phys. 88(1), 46 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.046

    Article  CAS  Google Scholar 

  19. A. Bhowmik, Y. Yang, W. Zhou, Y. Chew, G. Bi, On the heterogeneous cooling rates in laser-clad Al–50Si alloy. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2020.126780

    Article  Google Scholar 

  20. T. Ullsperger, D. Liu, B. Yürekli, G. Matthäus, L. Schade, B. Seyfarth, H. Kohl, R. Ramm, M. Rettenmayr, S. Nolte, Ultra-short pulsed laser powder bed fusion of Al–Si alloys: impact of pulse duration and energy in comparison to continuous wave excitation. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102085

    Article  Google Scholar 

  21. S. Grigoriev, T. Tarasova, G. Gvozdeva, S. Nowotny, Structure formation of hypereutectic Al–Si-alloys produced by laser surface treatment. J. Mech. Eng. 60(6), 389–394 (2014). https://doi.org/10.5545/sv-jme.2013.1211

    Article  Google Scholar 

  22. J.H. Risse, M. Trempa, F. Huber, H.W. Hoppel, D. Bartels, M. Schmidt, C. Reimann, J. Friedrich, Microstructure and mechanical properties of hypereutectic Al-high Si alloys up to 70 wt% Si-content produced from pre-alloyed and blended powder via laser powder bed fusion. Materials (2023). https://doi.org/10.3390/ma16020657

    Article  Google Scholar 

  23. R. Garrard, D. Lynch, L.N. Carter, N.J.E. Adkins, R. Gie, E. Chouteau, L. Pambaguian, M.M. Attallah, Comparison of LPBF processing of AlSi40 alloy using blended and pre-alloyed powder. Addi. Manuf. Lett. (2022). https://doi.org/10.1016/j.addlet.2022.100038

    Article  Google Scholar 

  24. G. Zhao, Z. Xing, M. Li, S. Gao, J. Tao, S. Chai, Research on microstructure and growth mechanism of different primary silicon in hypereutectic aluminum alloy. J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2152/1/012022

    Article  Google Scholar 

  25. Y. Li, T. Jiang, B. Wei, B. Xu, G. Xu, Z. Wang, Microcharacterization and mechanical performance of an Al–50Si alloy prepared using the sub-rapid solidification technique. Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2019.127287

    Article  Google Scholar 

  26. J. Wang, Z. Guo, J.L. Song, W.X. Hu, S. Xiong, On the growth mechanism of the primary silicon particle in a hypereutectic Al20 wt%Si alloy using synchrotron x-ray tomography. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.09.062

    Article  Google Scholar 

  27. S. Liu, H. Guo, Balling behavior of selective laser melting (SLM) magnesium alloy. Materials 13, 3632 (2020). https://doi.org/10.3390/ma13163632

    Article  CAS  Google Scholar 

  28. X. Wan, C. Tian, Y. Li, J. Zhou, S. Qian, L. Su, L. Wang, Effect of Y2O3 addition on microstructure and properties of laser cladded Al–Si coatings on AZ91D magnesium alloy. Materials. 16, 338 (2023). https://doi.org/10.3390/ma16010338

    Article  CAS  Google Scholar 

  29. J. Liu, X. Zhou, H. Xin, High-Si reinforced Al matrix composites prepared by powder semi-solid squeeze. J. Alloys Compd. 726, 772–778 (2017). https://doi.org/10.1016/j.jallcom.2017.08.049

    Article  CAS  Google Scholar 

  30. H. Zhou, X. Liu, Z. Yin, Y. Li, C. Liu, S. Liu, C. Wu, J. Liu, The fabrication of functional gradient hypereutectic Al–Si composites by liquid-solid separation technology. J. Alloys Compd. 763, 49 (2018). https://doi.org/10.1016/j.jallcom.2018.05.204

    Article  CAS  Google Scholar 

  31. J.M. Molina, A. Rodriguez-Guerrero, E. Louis, F. Rodriguez-Reinoso, J. Narciso, Porosity effect on thermal properties of Al-12 wt % Si/graphite composites. Materials (2017). https://doi.org/10.3390/ma10020177

    Article  Google Scholar 

  32. J. Guo, Z.-P. Guan, R.-F. Yan, P.-K. Ma, M.-H. Wang, P. Zhao, J.-G. Wang, Effect of modification with different contents of Sb and Sr on the thermal conductivity of hypoeutectic Al–Si alloy. Metals (2020). https://doi.org/10.3390/met10121637

    Article  Google Scholar 

  33. W. Zhai, Z. Zhang, F. Wang, X. Shen, S. Lee, L. Wang, Effect of Si content on microstructure and properties of Si/Al composites. Trans. Nonferrous Met. Soc. China 24, 982–988 (2014). https://doi.org/10.1016/S1003-6326(14)63152-6

    Article  CAS  Google Scholar 

  34. Q. Zhang, G. Wu, L. Jiang, G. Chen, Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC. Mater. Chem. Phys. 82(3), 780 (2003). https://doi.org/10.1016/j.matchemphys.2003.07.001

    Article  CAS  Google Scholar 

  35. Z. Cai, C. Zhang, R. Wang, C. Peng, X. Wu, H. Li, High-temperature mechanical properties and thermal cycling stability of Al–50Si alloy for electronic packaging. Mater. Sci. Eng. A 728, 95 (2018). https://doi.org/10.1016/j.msea.2018.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Natural Science Foundation of Anhui Province (No.1808085ME150).

Author information

Authors and Affiliations

Authors

Contributions

PH: conceptualization, methodology, writing—final version. AL: writing—original draft, analysis. XL: methodology, investigation. RL: methodology, writing—review & editing. YC: writing—review & editing. WZ: resources, conceptualization.

Corresponding author

Correspondence to Peng Hua.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, P., Liu, A., Li, X. et al. Microstructure and properties of Al–70Si alloy prepared by laser cladding. Journal of Materials Research 38, 4927–4936 (2023). https://doi.org/10.1557/s43578-023-01202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01202-7

Keywords

Navigation