Abstract
In this study, Al–70Si alloy was prepared by laser cladding. The effect of microstructure on the mechanical and thermo-physical properties was elucidated by comparing specimens prepared by laser cladding and casting methods. It is found that the laser cladding process can effectively reduce the formation of coarse primary silicon, which inevitably occurs in large quantities in cast samples. Therefore, various properties have been significantly improved. The tensile strength reaches 85 MPa, the thermal conductivity at room temperature is 76.6 W/(m·K), and the coefficient of thermal expansion (CTE) is 8.19 × 10−6/K. In addition, the solid solution treatment is able to spheroidize the primary silicon and passivate the sharp corners. The change in Si phase morphology can greatly reduce stress concentration and increase the degree of interfacial bonding. This resulted in an increase in tensile strength and thermal conductivity of 50.7% and 42.2%, respectively.
Graphical Abstract
Similar content being viewed by others
Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
References
Y.D. Jia, P. Ma, K.G. Prashanth, G. Wang, J. Yi, S. Scudino, F.Y. Cao, J.F. Sun, J. Eckert, Microstructure and thermal expansion behavior of Al–50Si synthesized by selective laser melting. J. Alloys Compd. 699, 548 (2017). https://doi.org/10.1016/j.jallcom.2016.12.429
L. Zhang, S. Chen, Q. Li, G. Chang, Formation mechanism and conditions of fine primary silicon being uniformly distributed on single αAl matrix in Al–Si alloys. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108853
D.T. Arunkumar, K.G. Basavakumar, S. Sujai, S.S. Prabu, Influences of P and Sr on microstructure and its effects on machinability and mechanical properties of hypereutectic Al–20%Si. Surf. Rev. Lett. (2023). https://doi.org/10.1142/s0218625x23500233
E. Fracchia, F.S. Gobber, M. Rosso, Effect of alloying elements on the Sr modification of Al–Si cast alloys. Metals (2021). https://doi.org/10.3390/met11020342
Z. Cai, C. Zhang, R. Wang, C. Peng, K. Qiu, Y. Feng, Preparation of Al–Si alloys by a rapid solidification and powder metallurgy route. Mater. Des. 87, 996 (2015). https://doi.org/10.1016/j.matdes.2015.08.106
W. Li, Z.H. Chen, D. Chen, J. Teng, C. Fan, Low-cycle fatigue behavior of SiCp/Al–Si composites produced by spray deposition. Mater. Sci. Eng. A 527(29–30), 7631 (2010). https://doi.org/10.1016/j.msea.2010.08.017
T.T. Saravanan, M. Kamaraj, S.C. Sharma, S. Anoop, S.K. Manwatkar, K.V. Ravikanth, A. Venugopal, S. Kumaran, Influence of characteristic eutectic free microstructure on mechanical and corrosion response of spark plasma sintered hypereutectic Al–Si alloy. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.131104
C. Gao, L. Niu, J. Ma, Y. An, Y. Hu, L. Yang, G. Chen, Y. Wang, Al-50wt%Si alloy by spark plasma sintering (SPS) for electronic packaging materials. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37(3), 500–506 (2022). https://doi.org/10.1007/s11595-022-2557-4
T. Hanemann, L.N. Carter, M. Habschied, N.J.E. Adkins, M.M. Attallah, M. Heilmaier, In-situ alloying of AlSi10Mg+Si using selective laser melting to control the coefficient of thermal expansion. J. Alloys Compd. 795, 8 (2019). https://doi.org/10.1016/j.jallcom.2019.04.260
L. Zhu, S. Wang, H. Pan, C. Yuan, X. Chen, Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J. Manuf. Process. 49, 344–354 (2020). https://doi.org/10.1016/j.jmapro.2019.12.009
L. Zhu, S. Wang, H. Lu, D. Qi, D. Wang, Z. Yang, J. Ning, Y. Dun, P. Xue, P. Xu, B. Xin, Investigation on synergism between additive and subtractive manufacturing for curved thin-walled structure. Virt. Phys. Prototyp. 17(2), 220–238 (2022). https://doi.org/10.1080/17452759.2022.2029009
L. Zhu, Z. Yang, B. Xin, S. Wang, G. Meng, J. Ning, P. Xue, Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.126964
Z. Yang, S. Wang, L. Zhu, J. Ning, B. Xin, Y. Dun, W. Yan, Manipulating molten pool dynamics during metal 3D printing by ultrasound. Appl. Phys. Rev. 9, 021416 (2022). https://doi.org/10.1063/5.0082461
R. Rumman, M. Manjaiah, S. Touzé, R.A. Sims, J.Y. Hascoët, J.S. Quinton, Characterization of Al–12Si thin-wall properties fabricated with laser direct energy deposition. Sustainability 15, 12806 (2023). https://doi.org/10.3390/su151712806
Y.D. Jia, L.B. Zhang, P. Ma, S. Scudino, G. Wang, J. Yi, J. Eckert, K.G. Prashanth, Thermal expansion behavior of Al–xSi alloys fabricated using selective laser melting. Prog. Addit. Manuf. 5(3), 247 (2020). https://doi.org/10.1007/s40964-020-00130-w
N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting. Mater. Des. 99, 120 (2016). https://doi.org/10.1016/j.matdes.2016.03.053
T. Tarasova, G. Gvozdeva, R. Ableyeva, Aluminium matrix composites produced by laser based additive manufacturing. Mater. Today: Proc. 11, 305 (2019). https://doi.org/10.1016/j.matpr.2018.12.149
C.-S. Park, C.-H. Kim, M.-H. Kim, C. Lee, The effect of particle size and volume fraction of the reinforced phases on the linear thermal expansion in the Al–Si–SiCp system. Mater. Chem. Phys. 88(1), 46 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.046
A. Bhowmik, Y. Yang, W. Zhou, Y. Chew, G. Bi, On the heterogeneous cooling rates in laser-clad Al–50Si alloy. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2020.126780
T. Ullsperger, D. Liu, B. Yürekli, G. Matthäus, L. Schade, B. Seyfarth, H. Kohl, R. Ramm, M. Rettenmayr, S. Nolte, Ultra-short pulsed laser powder bed fusion of Al–Si alloys: impact of pulse duration and energy in comparison to continuous wave excitation. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102085
S. Grigoriev, T. Tarasova, G. Gvozdeva, S. Nowotny, Structure formation of hypereutectic Al–Si-alloys produced by laser surface treatment. J. Mech. Eng. 60(6), 389–394 (2014). https://doi.org/10.5545/sv-jme.2013.1211
J.H. Risse, M. Trempa, F. Huber, H.W. Hoppel, D. Bartels, M. Schmidt, C. Reimann, J. Friedrich, Microstructure and mechanical properties of hypereutectic Al-high Si alloys up to 70 wt% Si-content produced from pre-alloyed and blended powder via laser powder bed fusion. Materials (2023). https://doi.org/10.3390/ma16020657
R. Garrard, D. Lynch, L.N. Carter, N.J.E. Adkins, R. Gie, E. Chouteau, L. Pambaguian, M.M. Attallah, Comparison of LPBF processing of AlSi40 alloy using blended and pre-alloyed powder. Addi. Manuf. Lett. (2022). https://doi.org/10.1016/j.addlet.2022.100038
G. Zhao, Z. Xing, M. Li, S. Gao, J. Tao, S. Chai, Research on microstructure and growth mechanism of different primary silicon in hypereutectic aluminum alloy. J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2152/1/012022
Y. Li, T. Jiang, B. Wei, B. Xu, G. Xu, Z. Wang, Microcharacterization and mechanical performance of an Al–50Si alloy prepared using the sub-rapid solidification technique. Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2019.127287
J. Wang, Z. Guo, J.L. Song, W.X. Hu, S. Xiong, On the growth mechanism of the primary silicon particle in a hypereutectic Al20 wt%Si alloy using synchrotron x-ray tomography. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.09.062
S. Liu, H. Guo, Balling behavior of selective laser melting (SLM) magnesium alloy. Materials 13, 3632 (2020). https://doi.org/10.3390/ma13163632
X. Wan, C. Tian, Y. Li, J. Zhou, S. Qian, L. Su, L. Wang, Effect of Y2O3 addition on microstructure and properties of laser cladded Al–Si coatings on AZ91D magnesium alloy. Materials. 16, 338 (2023). https://doi.org/10.3390/ma16010338
J. Liu, X. Zhou, H. Xin, High-Si reinforced Al matrix composites prepared by powder semi-solid squeeze. J. Alloys Compd. 726, 772–778 (2017). https://doi.org/10.1016/j.jallcom.2017.08.049
H. Zhou, X. Liu, Z. Yin, Y. Li, C. Liu, S. Liu, C. Wu, J. Liu, The fabrication of functional gradient hypereutectic Al–Si composites by liquid-solid separation technology. J. Alloys Compd. 763, 49 (2018). https://doi.org/10.1016/j.jallcom.2018.05.204
J.M. Molina, A. Rodriguez-Guerrero, E. Louis, F. Rodriguez-Reinoso, J. Narciso, Porosity effect on thermal properties of Al-12 wt % Si/graphite composites. Materials (2017). https://doi.org/10.3390/ma10020177
J. Guo, Z.-P. Guan, R.-F. Yan, P.-K. Ma, M.-H. Wang, P. Zhao, J.-G. Wang, Effect of modification with different contents of Sb and Sr on the thermal conductivity of hypoeutectic Al–Si alloy. Metals (2020). https://doi.org/10.3390/met10121637
W. Zhai, Z. Zhang, F. Wang, X. Shen, S. Lee, L. Wang, Effect of Si content on microstructure and properties of Si/Al composites. Trans. Nonferrous Met. Soc. China 24, 982–988 (2014). https://doi.org/10.1016/S1003-6326(14)63152-6
Q. Zhang, G. Wu, L. Jiang, G. Chen, Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC. Mater. Chem. Phys. 82(3), 780 (2003). https://doi.org/10.1016/j.matchemphys.2003.07.001
Z. Cai, C. Zhang, R. Wang, C. Peng, X. Wu, H. Li, High-temperature mechanical properties and thermal cycling stability of Al–50Si alloy for electronic packaging. Mater. Sci. Eng. A 728, 95 (2018). https://doi.org/10.1016/j.msea.2018.05.020
Acknowledgments
The work was supported by the Natural Science Foundation of Anhui Province (No.1808085ME150).
Author information
Authors and Affiliations
Contributions
PH: conceptualization, methodology, writing—final version. AL: writing—original draft, analysis. XL: methodology, investigation. RL: methodology, writing—review & editing. YC: writing—review & editing. WZ: resources, conceptualization.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hua, P., Liu, A., Li, X. et al. Microstructure and properties of Al–70Si alloy prepared by laser cladding. Journal of Materials Research 38, 4927–4936 (2023). https://doi.org/10.1557/s43578-023-01202-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01202-7