Abstract
In thermal energy storage systems, supercooling phenomenon is undesired for hindering the discharge of latent heat, and phase change material remains in a metastable equilibrium state. Existence of SiC as a particle additive is used for triggering crystallization in sodium sulfate decahydrate as an inorganic phase change material. Experimental measurements were performed to determine some kinetic and thermodynamic parameters like induction time, metastable zone width, and solubility. With SiC-added particles, the induction time decreased by 22% and the width of the metastable zone fell by 6%, while solubility did not illustrate important alterations. Among empirical secondary nucleation model, classical nucleation theory, and empirical Kashchiev heterogeneous nucleation model, it was observed that the secondary nucleation model is more effective in demonstrating the impact of SiC particles on nucleation. With SiC-added particles, there were shorter induction time and less surface tension which subsequently promoted nucleation step and decreased the supercooling phenomenon.
Graphical abstract
Similar content being viewed by others
References
C. Li, B. Zhang, B. Xie, X. Zhao, J. Chen, Tailored phase change behavior of Na2SO4·10H2O/expanded graphite composite for thermal energy storage. Energy Convers. Manage. 208, 112586 (2020). https://doi.org/10.1016/j.enconman.2020.112586
N. Kumar, J. Hirschey, T.J. LaClair, K.R. Gluesenkamp, S. Graham, Review of stability and thermal conductivity enhancements for salt hydrates. J. Energy Storage 24, 100794 (2019). https://doi.org/10.1016/j.est.2019.100794
G.A. Lane, Phase change materials for energy storage nucleation to prevent supercooling. Sol. Energy Mater. Sol. Cells 27(2), 135–160 (1992). https://doi.org/10.1016/0927-0248(92)90116-7
P.H. Feng, B.C. Zhao, R.Z. Wang, Thermophysical heat storage for cooling, heating, and power generation: a review. Appl. Therm. Eng. 166, 114728 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114728
M. Telkes, Nucleation of supersaturated inorganic salt solutions. Ind. Eng. Chem. 44(6), 1308–1310 (2002). https://doi.org/10.1021/ie50510a036
M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45(9–10), 1597–1615 (2004). https://doi.org/10.1016/j.enconman.2003.09.015
S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 13(9), 2225–2244 (2009). https://doi.org/10.1016/j.rser.2009.06.024
A. Khaleghi Dehghan, M. Manteghian, Promoting effect of AlN foreign particles on crystallization of sodium sulfate decahydrate. J. Cryst. Growth 593, 126754 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126754
M.H. Zahir, S.A. Mohamed, R. Saidur, F.A. Al-Sulaiman, Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl. Energy 240, 793–817 (2019). https://doi.org/10.1016/j.apenergy.2019.02.045
A. Khaleghi Dehghan, M. Manteghian, S.M. Sadrameli, A turbidity titration procedure for the nucleation mechanism determination of sodium sulfate decahydrate (Glauber salt) in unseeded aqueous solution. J. Mater. Res. Technol 11, 285–300 (2021). https://doi.org/10.1016/j.jmrt.2020.12.113
R.A. Taylor, N. Tsafnat, A. Washer, Experimental characterisation of sub-cooling in hydrated salt phase change materials. Appl. Therm. Eng. 93, 935–938 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.032
G. Feng, X. Xu, N. He, H. Li, K. Huang, Testing research of energy storage system during Na2SO4·10H2O phase change. Mater. Res. Innov. (2015). https://doi.org/10.1179/1432891714z.0000000001232
J. Zhang, S.S. Wang, S.D. Zhang, Q.H. Tao, L. Pan, Z.Y. Wang, Z.P. Zhang, Y. Lei, S.K. Yang, H.P. Zhao, In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 Solid Nanobowls toward Smart Heat Storage. J. Phys. Chem. C 115(41), 20061–20066 (2011). https://doi.org/10.1021/jp202373b
H. Kumano, T. Hirata, K. Mitsuishi, K. Ueno, Experimental study on effect of electric field on hydrate nucleation in supercooled tetra-n-butyl ammonium bromide aqueous solution. Int. J. Refrig. 35(5), 1266–1274 (2012). https://doi.org/10.1016/j.ijrefrig.2012.03.005
Ö. Gök, M. Yilmaz, and H. Paksoy (2006) Stabilization of Glauber’s salt for latent heat storage, In: 10th International Conference on Thermal Energy Storage, Ecostock, NJ, USA. 31: 79–88.
Y. Liu, Y. Yang, Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol. Energy Mater. Sol. Cells 160, 18–25 (2017). https://doi.org/10.1016/j.solmat.2016.09.050
Y. Lin, G. Alva, G. Fang, Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 165, 685–708 (2018). https://doi.org/10.1016/j.energy.2018.09.128
A. García-Romero, G. Diarce, J. Ibarretxe, A. Urresti, J.M. Sala, Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol. Energy Mater. Sol. Cells 102, 189–195 (2012). https://doi.org/10.1016/j.solmat.2012.03.003
G. Wang, C. Xu, W. Kong, G. Englmair, J. Fan, G. Wei, S. Furbo, Review on sodium acetate trihydrate in flexible thermal energy storages: Properties, challenges and applications. J. Energy Storage 40, 102780 (2021). https://doi.org/10.1016/j.est.2021.102780
P. Bharmoria, P.S. Gehlot, H. Gupta, A. Kumar, Temperature-dependent solubility transition of Na(2)SO(4) in water and the effect of NaCl therein: solution structures and salt water dynamics. J. Phys. Chem. B 118(44), 12734–12742 (2014). https://doi.org/10.1021/jp507949h
P. Gallo, D. Corradini, M. Rovere, Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys. Chem. Chem. Phys. 13(44), 19814–19822 (2011). https://doi.org/10.1039/c1cp22166c
G. Stirnemann, E. Wernersson, P. Jungwirth, D. Laage, Mechanisms of acceleration and retardation of water dynamics by ions. J. Am. Chem. Soc. 135(32), 11824–11831 (2013). https://doi.org/10.1021/ja405201s
J.S. Kim, Z. Wu, A.R. Morrow, A. Yethiraj, A. Yethiraj, Self-diffusion and viscosity in electrolyte solutions. J. Phys. Chem. B 116(39), 12007–12013 (2012). https://doi.org/10.1021/jp306847t
H.J. Bakker, Structural dynamics of aqueous salt solutions. Chem. Rev. 108(4), 1456–1473 (2008). https://doi.org/10.1021/cr0206622
W. Wachter, W. Kunz, R. Buchner, G. Hefter, Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J. Phys. Chem. A 109(39), 8675–8683 (2005). https://doi.org/10.1021/jp053299m
T. Hazi Mastan, M. Lenka, D. Sarkar, Nucleation kinetics from metastable zone widths for sonocrystallization of l-phenylalanine. Ultrason. Sonochem. 36, 497–506 (2017). https://doi.org/10.1016/j.ultsonch.2016.12.017
G. Zeng, H. Li, S. Huang, X. Wang, J. Chen, Determination of metastable zone width and the primary nucleation kinetics of sodium sulfate. Theor. Found. Chem. Eng. 49(6), 869–876 (2015). https://doi.org/10.1134/s0040579515050309
C. Zhang, F. Liu, F. Wang, H. Li, F. Zeng, Y. Ma, L. Wang, Crystallization process and nucleation kinetics of Mg(2+)//SO(4) (2-), NO(3) (-)-H(2)O system. Water Sci. Technol. 80(5), 950–960 (2019). https://doi.org/10.2166/wst.2019.341
F.Y. Zhu, H.X. Zhou, Y.Q. Zhou, H.W. Ge, W.C. Fang, Y. Fang, C.H. Fang, Phase change performance assessment of salt mixtures for thermal energy storage material. Int. J. Energy Res. 41(13), 1855–1866 (2017). https://doi.org/10.1002/er.3747
P. Maheshwari, D. Dutta, S.K. Sharma, K. Sudarshan, P.K. Pujari, M. Majumder, B. Pahari, B. Bandyopadhyay, K. Ghoshray, A. Ghoshray, Effect of interfacial hydrogen bonding on the freezing/melting behavior of nanoconfined liquids. J. Phys. Chem. C 114(11), 4966–4972 (2010). https://doi.org/10.1021/jp911684m
F. Artusio, R. Pisano, Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: a review. Int. J. Pharm. 547(1–2), 190–208 (2018). https://doi.org/10.1016/j.ijpharm.2018.05.069
G. Cumming, F. Fidler, D.L. Vaux, Error bars in experimental biology. J. Cell Biol. 177(1), 7–11 (2007). https://doi.org/10.1083/jcb.200611141
A. Ghatak, G. Rawal, A. Ghatak, Precipitant-free crystallization of protein molecules induced by incision on substrate. Crystals 7(8), 245 (2017). https://doi.org/10.3390/cryst7080245
J. Anwar, S. Khan, L. Lindfors, Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. Engl. 54(49), 14681–14684 (2015). https://doi.org/10.1002/anie.201501216
N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions. J. Cryst. Growth 310(3), 629–634 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.123
S.S. Kadam, H.J.M. Kramer, J.H. ter Horst, Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst. Growth Des. 11(4), 1271–1277 (2011). https://doi.org/10.1021/cg101504c
A. Khaleghi, S.M. Sadrameli, M. Manteghian, Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation. Rev. Inorg. Chem. 40(4), 167–192 (2020)
N.H. Fletcher, Size effect in heterogeneous nucleation. J. Chem. Phys. 29(3), 572–576 (1958)
H. Babar, H.M. Ali, Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 281, 598–633 (2019)
A. Khaleghi, S. Ghader, D. Afzali, Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. Int. J. Mining Sci. Technol. 24(2), 251–257 (2014)
L. Kong, J. Sun, Y. Bao, Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 7(21), 12599–12609 (2017)
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
There is no funding or conflicts of interests to report for this submission.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khaleghi Dehghan, A., Manteghian, M. SiC-added particles triggering effect in nucleation of Glauber hydrate salt. Journal of Materials Research 38, 4913–4926 (2023). https://doi.org/10.1557/s43578-023-01201-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01201-8