Skip to main content
Log in

SiC-added particles triggering effect in nucleation of Glauber hydrate salt

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In thermal energy storage systems, supercooling phenomenon is undesired for hindering the discharge of latent heat, and phase change material remains in a metastable equilibrium state. Existence of SiC as a particle additive is used for triggering crystallization in sodium sulfate decahydrate as an inorganic phase change material. Experimental measurements were performed to determine some kinetic and thermodynamic parameters like induction time, metastable zone width, and solubility. With SiC-added particles, the induction time decreased by 22% and the width of the metastable zone fell by 6%, while solubility did not illustrate important alterations. Among empirical secondary nucleation model, classical nucleation theory, and empirical Kashchiev heterogeneous nucleation model, it was observed that the secondary nucleation model is more effective in demonstrating the impact of SiC particles on nucleation. With SiC-added particles, there were shorter induction time and less surface tension which subsequently promoted nucleation step and decreased the supercooling phenomenon.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. C. Li, B. Zhang, B. Xie, X. Zhao, J. Chen, Tailored phase change behavior of Na2SO4·10H2O/expanded graphite composite for thermal energy storage. Energy Convers. Manage. 208, 112586 (2020). https://doi.org/10.1016/j.enconman.2020.112586

    Article  CAS  Google Scholar 

  2. N. Kumar, J. Hirschey, T.J. LaClair, K.R. Gluesenkamp, S. Graham, Review of stability and thermal conductivity enhancements for salt hydrates. J. Energy Storage 24, 100794 (2019). https://doi.org/10.1016/j.est.2019.100794

    Article  Google Scholar 

  3. G.A. Lane, Phase change materials for energy storage nucleation to prevent supercooling. Sol. Energy Mater. Sol. Cells 27(2), 135–160 (1992). https://doi.org/10.1016/0927-0248(92)90116-7

    Article  CAS  Google Scholar 

  4. P.H. Feng, B.C. Zhao, R.Z. Wang, Thermophysical heat storage for cooling, heating, and power generation: a review. Appl. Therm. Eng. 166, 114728 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114728

    Article  Google Scholar 

  5. M. Telkes, Nucleation of supersaturated inorganic salt solutions. Ind. Eng. Chem. 44(6), 1308–1310 (2002). https://doi.org/10.1021/ie50510a036

    Article  Google Scholar 

  6. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45(9–10), 1597–1615 (2004). https://doi.org/10.1016/j.enconman.2003.09.015

    Article  CAS  Google Scholar 

  7. S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sustain. Energy Rev. 13(9), 2225–2244 (2009). https://doi.org/10.1016/j.rser.2009.06.024

    Article  CAS  Google Scholar 

  8. A. Khaleghi Dehghan, M. Manteghian, Promoting effect of AlN foreign particles on crystallization of sodium sulfate decahydrate. J. Cryst. Growth 593, 126754 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126754

    Article  CAS  Google Scholar 

  9. M.H. Zahir, S.A. Mohamed, R. Saidur, F.A. Al-Sulaiman, Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl. Energy 240, 793–817 (2019). https://doi.org/10.1016/j.apenergy.2019.02.045

    Article  CAS  Google Scholar 

  10. A. Khaleghi Dehghan, M. Manteghian, S.M. Sadrameli, A turbidity titration procedure for the nucleation mechanism determination of sodium sulfate decahydrate (Glauber salt) in unseeded aqueous solution. J. Mater. Res. Technol 11, 285–300 (2021). https://doi.org/10.1016/j.jmrt.2020.12.113

    Article  CAS  Google Scholar 

  11. R.A. Taylor, N. Tsafnat, A. Washer, Experimental characterisation of sub-cooling in hydrated salt phase change materials. Appl. Therm. Eng. 93, 935–938 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.032

    Article  CAS  Google Scholar 

  12. G. Feng, X. Xu, N. He, H. Li, K. Huang, Testing research of energy storage system during Na2SO4·10H2O phase change. Mater. Res. Innov. (2015). https://doi.org/10.1179/1432891714z.0000000001232

    Article  Google Scholar 

  13. J. Zhang, S.S. Wang, S.D. Zhang, Q.H. Tao, L. Pan, Z.Y. Wang, Z.P. Zhang, Y. Lei, S.K. Yang, H.P. Zhao, In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 Solid Nanobowls toward Smart Heat Storage. J. Phys. Chem. C 115(41), 20061–20066 (2011). https://doi.org/10.1021/jp202373b

    Article  CAS  Google Scholar 

  14. H. Kumano, T. Hirata, K. Mitsuishi, K. Ueno, Experimental study on effect of electric field on hydrate nucleation in supercooled tetra-n-butyl ammonium bromide aqueous solution. Int. J. Refrig. 35(5), 1266–1274 (2012). https://doi.org/10.1016/j.ijrefrig.2012.03.005

    Article  CAS  Google Scholar 

  15. Ö. Gök, M. Yilmaz, and H. Paksoy (2006) Stabilization of Glauber’s salt for latent heat storage, In: 10th International Conference on Thermal Energy Storage, Ecostock, NJ, USA. 31: 79–88.

  16. Y. Liu, Y. Yang, Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol. Energy Mater. Sol. Cells 160, 18–25 (2017). https://doi.org/10.1016/j.solmat.2016.09.050

    Article  CAS  Google Scholar 

  17. Y. Lin, G. Alva, G. Fang, Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 165, 685–708 (2018). https://doi.org/10.1016/j.energy.2018.09.128

    Article  CAS  Google Scholar 

  18. A. García-Romero, G. Diarce, J. Ibarretxe, A. Urresti, J.M. Sala, Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol. Energy Mater. Sol. Cells 102, 189–195 (2012). https://doi.org/10.1016/j.solmat.2012.03.003

    Article  CAS  Google Scholar 

  19. G. Wang, C. Xu, W. Kong, G. Englmair, J. Fan, G. Wei, S. Furbo, Review on sodium acetate trihydrate in flexible thermal energy storages: Properties, challenges and applications. J. Energy Storage 40, 102780 (2021). https://doi.org/10.1016/j.est.2021.102780

    Article  Google Scholar 

  20. P. Bharmoria, P.S. Gehlot, H. Gupta, A. Kumar, Temperature-dependent solubility transition of Na(2)SO(4) in water and the effect of NaCl therein: solution structures and salt water dynamics. J. Phys. Chem. B 118(44), 12734–12742 (2014). https://doi.org/10.1021/jp507949h

    Article  CAS  Google Scholar 

  21. P. Gallo, D. Corradini, M. Rovere, Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys. Chem. Chem. Phys. 13(44), 19814–19822 (2011). https://doi.org/10.1039/c1cp22166c

    Article  CAS  Google Scholar 

  22. G. Stirnemann, E. Wernersson, P. Jungwirth, D. Laage, Mechanisms of acceleration and retardation of water dynamics by ions. J. Am. Chem. Soc. 135(32), 11824–11831 (2013). https://doi.org/10.1021/ja405201s

    Article  CAS  Google Scholar 

  23. J.S. Kim, Z. Wu, A.R. Morrow, A. Yethiraj, A. Yethiraj, Self-diffusion and viscosity in electrolyte solutions. J. Phys. Chem. B 116(39), 12007–12013 (2012). https://doi.org/10.1021/jp306847t

    Article  CAS  Google Scholar 

  24. H.J. Bakker, Structural dynamics of aqueous salt solutions. Chem. Rev. 108(4), 1456–1473 (2008). https://doi.org/10.1021/cr0206622

    Article  CAS  Google Scholar 

  25. W. Wachter, W. Kunz, R. Buchner, G. Hefter, Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J. Phys. Chem. A 109(39), 8675–8683 (2005). https://doi.org/10.1021/jp053299m

    Article  CAS  Google Scholar 

  26. T. Hazi Mastan, M. Lenka, D. Sarkar, Nucleation kinetics from metastable zone widths for sonocrystallization of l-phenylalanine. Ultrason. Sonochem. 36, 497–506 (2017). https://doi.org/10.1016/j.ultsonch.2016.12.017

    Article  CAS  Google Scholar 

  27. G. Zeng, H. Li, S. Huang, X. Wang, J. Chen, Determination of metastable zone width and the primary nucleation kinetics of sodium sulfate. Theor. Found. Chem. Eng. 49(6), 869–876 (2015). https://doi.org/10.1134/s0040579515050309

    Article  CAS  Google Scholar 

  28. C. Zhang, F. Liu, F. Wang, H. Li, F. Zeng, Y. Ma, L. Wang, Crystallization process and nucleation kinetics of Mg(2+)//SO(4) (2-), NO(3) (-)-H(2)O system. Water Sci. Technol. 80(5), 950–960 (2019). https://doi.org/10.2166/wst.2019.341

    Article  CAS  Google Scholar 

  29. F.Y. Zhu, H.X. Zhou, Y.Q. Zhou, H.W. Ge, W.C. Fang, Y. Fang, C.H. Fang, Phase change performance assessment of salt mixtures for thermal energy storage material. Int. J. Energy Res. 41(13), 1855–1866 (2017). https://doi.org/10.1002/er.3747

    Article  CAS  Google Scholar 

  30. P. Maheshwari, D. Dutta, S.K. Sharma, K. Sudarshan, P.K. Pujari, M. Majumder, B. Pahari, B. Bandyopadhyay, K. Ghoshray, A. Ghoshray, Effect of interfacial hydrogen bonding on the freezing/melting behavior of nanoconfined liquids. J. Phys. Chem. C 114(11), 4966–4972 (2010). https://doi.org/10.1021/jp911684m

    Article  CAS  Google Scholar 

  31. F. Artusio, R. Pisano, Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: a review. Int. J. Pharm. 547(1–2), 190–208 (2018). https://doi.org/10.1016/j.ijpharm.2018.05.069

    Article  CAS  Google Scholar 

  32. G. Cumming, F. Fidler, D.L. Vaux, Error bars in experimental biology. J. Cell Biol. 177(1), 7–11 (2007). https://doi.org/10.1083/jcb.200611141

    Article  CAS  Google Scholar 

  33. A. Ghatak, G. Rawal, A. Ghatak, Precipitant-free crystallization of protein molecules induced by incision on substrate. Crystals 7(8), 245 (2017). https://doi.org/10.3390/cryst7080245

    Article  CAS  Google Scholar 

  34. J. Anwar, S. Khan, L. Lindfors, Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. Engl. 54(49), 14681–14684 (2015). https://doi.org/10.1002/anie.201501216

    Article  CAS  Google Scholar 

  35. N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions. J. Cryst. Growth 310(3), 629–634 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.123

    Article  CAS  Google Scholar 

  36. S.S. Kadam, H.J.M. Kramer, J.H. ter Horst, Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst. Growth Des. 11(4), 1271–1277 (2011). https://doi.org/10.1021/cg101504c

    Article  CAS  Google Scholar 

  37. A. Khaleghi, S.M. Sadrameli, M. Manteghian, Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation. Rev. Inorg. Chem. 40(4), 167–192 (2020)

    Article  CAS  Google Scholar 

  38. N.H. Fletcher, Size effect in heterogeneous nucleation. J. Chem. Phys. 29(3), 572–576 (1958)

    Article  CAS  Google Scholar 

  39. H. Babar, H.M. Ali, Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 281, 598–633 (2019)

    Article  CAS  Google Scholar 

  40. A. Khaleghi, S. Ghader, D. Afzali, Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. Int. J. Mining Sci. Technol. 24(2), 251–257 (2014)

    Article  CAS  Google Scholar 

  41. L. Kong, J. Sun, Y. Bao, Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 7(21), 12599–12609 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atefeh Khaleghi Dehghan or Mehrdad Manteghian.

Ethics declarations

Conflict of interest

There is no funding or conflicts of interests to report for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi Dehghan, A., Manteghian, M. SiC-added particles triggering effect in nucleation of Glauber hydrate salt. Journal of Materials Research 38, 4913–4926 (2023). https://doi.org/10.1557/s43578-023-01201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01201-8

Keywords

Navigation