Skip to main content

Advertisement

Log in

Temperature-dependent energy storage performance of La2O3-doped(1−x) Bi0.5(Na0.84K0.16)0.5TiO3xSrTiO3 multifunctional ceramics for piezoelectric sensor applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, La2O3-doped (1 − x) Bi 0.5(Na0.84K0.16)0.5TiO3xSrTiO3 ceramics where x varies from 0.000 to 0.030 mol%, synthesized by solid-state reaction technique. The La2O3-doped BNKT–ST ceramics exhibit pure perovskite structures with a tetragonal (P4bm) phase structure. Computational structural properties of ceramics were computed VESTA program. The surface morphology of average grain size has decreased with increasing the substitution of La2O3 ions into the BNKT–ST ceramics. A decrease in the remnant polarization and the coercive field with an increase in the La2O3 concentration is attributed to the change in long-range ferroelectric order. When the La2O3 amount up to 0.020 mol%, doped samples show good piezoelectric coefficient (d33) exhibiting a maximum of ~ 187 pC/N. The prepared sample shows an energy storage density and efficiency of 0.90 J/cm3 and η (70%) at 0.97BNKT-0.030ST composition. La2O3-doped BNKT–ST ceramic optimistic application prospects in the field of high-power density energy storage capacitor and piezoelectric sensor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The corresponding author can provide the data from the paper upon reasonable request.

References

  1. S. Merrad et al., Physical properties of the perovskite SrTiO3-δ synthetized by chemical route. J. Mater. Sci. Mater. Electron. 34(3), 206 (2023)

    Article  CAS  Google Scholar 

  2. V. Athikesavan, E. Ranjith Kumar, J. Suryakanth, Evaluation of the structural and electrical properties of perovskite NKN-LN ceramics for energy storage applications. New J. Chem. 46(42), 20433–20444 (2022)

    Article  CAS  Google Scholar 

  3. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  4. K. Shibata, R. Wang, T. Tou, J. Koruza, Applications of lead-free piezoelectric materials. MRS Bull. 43, 612–616 (2018)

    Article  CAS  Google Scholar 

  5. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics (2018). https://doi.org/10.1016/j.jmat.2018.02.001

    Article  Google Scholar 

  6. Q. Liu, Y. Zhang, J. Gao, Z. Zhou, D. Yang, K.Y. Lee, A. Studer, M. Hinterstein, K. Wang, X. Zhang, L. Li, J.F. Li, Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. Nat. Sci. Rev. 7, 355–365 (2020)

    Article  CAS  Google Scholar 

  7. J. Yin, C. Zhao, Y. Zhang, J. Wu, Composition-induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. J. Am. Ceram. Soc. 100, 5601–5609 (2017)

    Article  CAS  Google Scholar 

  8. A. Deng, J. Wu, Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics. J. Materiomics 6, 286–292 (2020)

    Article  Google Scholar 

  9. O. Tokay, M. Yazici, A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics. Mater. Today Commun. 31, 103358 (2022)

    Article  CAS  Google Scholar 

  10. C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140(45), 15252–15260 (2018)

    Article  CAS  Google Scholar 

  11. M. Badole, S. Dwivedi, T. Pareek, S.A. Ahmed, S. Kumar, Significantly improved dielectric and piezoelectric properties of BiAlO3 modified potassium bismuth titanate lead-free ceramics. Mater. Sci. Engg: B 262, 114749 (2020)

    Article  CAS  Google Scholar 

  12. D. Wang, G. Wang, Z. Lu, Z. Al-Jlaihawi, A. Feteira, Crystal structure, phase transitions and photoferroelectric properties of KNbO3-based lead-free ferroelectric ceramics: a brief review. Front. Mater. 7, 1–13 (2020)

    Google Scholar 

  13. W. Kang, Z. Zheng, Y. Li, R. Zhao, Study on piezoelectric, dielectric and dispersive phase transition of BaTiO3–BaZrO3–CaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 16244–16250 (2019)

    Article  CAS  Google Scholar 

  14. V.V. Deshmukh, C.R. Ravikumar, M.R. Anil Kumar, S. Ghotekar, A. Naveen Kumar, A.A. Jahagirdar, H.C. Ananda Murthy, Structure, morphology and electrochemical properties of SrTiO3 perovskite: photocatalytic and supercapacitor applications. Environ. Chem. Ecotoxicol. 3, 241–248 (2021)

    Article  CAS  Google Scholar 

  15. Y. Pu, P. Gao, T. Wu, X. Liu, Z. Dong, Dielectric and piezoelectric properties of Bi0.5K0.5TiO3-BaNb2O6 lead-free piezoelectric ceramics. J. Electron. Mater. 44, 332–340 (2015)

    Article  CAS  Google Scholar 

  16. B. Jiang, T. Grande, S.M. Selbach, Local structure of disordered Bi0.5K0.5TiO3 investigated by pair distribution function analysis and first-principles calculations. Chem. Mater. 29, 4244–4252 (2017)

    Article  CAS  Google Scholar 

  17. Y. Liu, Y. Ji, Y. Yang, Growth, properties and applications of Bi0.5Na0.5TiO3 ferroelectric nanomaterials. Nanomaterials 11, 1724 (2021)

    Article  CAS  Google Scholar 

  18. K. Kumar, B. Kumar, Effect of Nb-doping on dielectric, ferroelectric and conduction behaviour of lead free Bi0.5(Na0.5K0.5)0.5TiO3 ceramic. Ceram. Int. 38, 1157–1165 (2012)

    Article  CAS  Google Scholar 

  19. L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 39, 3057–3063 (2019)

    Article  CAS  Google Scholar 

  20. M. Shi, Z. Si, E. Men, Z. Zhao, Y. Xu, R. Zuo, L. Guo, K. Hu, Mn-doped (Bi0.5Na0.5) TiO3 thin film with low leakage current density and high ferroelectric performance. J. Mater. Sci. Mater. Electron. 32, 7249–7258 (2021)

    Article  CAS  Google Scholar 

  21. H.S. Han, W. Jo, J. Rödel, I.K. Hong, W.P. Tai, J.S. Lee, Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors. J. Phys. Condens. Matter 24, 365901 (2012)

    Article  Google Scholar 

  22. F. Akram, A. Zeb, M. Habib, A. Ullah, P. Ahmad, S.J. Milne, A. Karoui, N. Ali, A. Kumar, S. Lee, C.W. Ahn, Piezoelectric performance of the binary K1/2Bi1/2TiO3–LiTaO3 relaxor-ferroelectric ceramics. Mater. Chem. Phys. 279, 125764 (2022)

    Article  CAS  Google Scholar 

  23. L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin, Z. Liu, Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 4670–4679 (2017)

    Article  CAS  Google Scholar 

  24. A. Hussain, A. Maqbool, R.A. Malik, J.H. Lee, Y.S. Sung, T.K. Song, M.H. Kim, Phase structure and electromechanical behavior of Li, Nb co-doped 0.95Bi0.5Na0.5TiO3–0.05BaZrO3 ceramics. Ceram. Int. 43, S204–S208 (2017)

    Article  CAS  Google Scholar 

  25. V. Athikesavan, M. Arulmani, S. Bhuvana, Evaluation of the structure and electrical properties of (1–x) Bi0.5(Na0.80K0.20)0.5TiO3–xLiNbO3 ceramic composite for piezoelectric sensor applications. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979223502806

    Article  Google Scholar 

  26. Y. Hou, J. Li, Z. Zheng, T. Ye, J. Ding, Rational co-doping of SrZrO3 and BaTiO3 in Bi0.5Na0.5TiO3 for extraordinary energy storage and electrocaloric performances. ACS Appl. Energy Mater. 5(3), 3477–3488 (2022)

    Article  CAS  Google Scholar 

  27. X. Sang, P. Wang, L. Ai, Y. Li, J. Bu, Effect of La2O3 on the microstructure and electrical properties of 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics. Adv. Mater. Res. 284, 1408–1411 (2011)

    Google Scholar 

  28. A. Karuppanan et al., Synthesis and characterization of K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics for energy storage applications. J. Mater. Sci. Mater. Electron. 32, 717–726 (2021)

    Article  CAS  Google Scholar 

  29. T.H. Dinh, H.Y. Lee, C.H. Yoon, R.A. Malik, Y.M. Kong, J.S. Lee, Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J. Korean Phys. Soc. 62, 1004–1008 (2013)

    Article  CAS  Google Scholar 

  30. V.D.N. Tran, A. Ullah, T.H. Dinh, J.S. Lee, Effect of lanthanum doping on ferroelectric and strain properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3–0.04SrTiO3 lead-free ceramics. J. Electron. Mater. 45, 2639–2643 (2016)

    Article  CAS  Google Scholar 

  31. S.M. Ramay, H. Kassim, N. Saleh Al Zayed, M. Shahabuddin, S.M. Ali, A. Mahmood, High-energy storage performance in lead-free lanthanum and lithium co-doped BaTi0.96Ni0.04O3 ferroelectric ceramics. Appl. Phys. A 128, 883 (2022)

    Article  CAS  Google Scholar 

  32. R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3–SrTiO3 piezoelectric ceramics. Ceram. Int. 44, 13259–13266 (2018)

    Article  CAS  Google Scholar 

  33. B. Madhavan, A. Suvitha, A. Steephen, Experimental and theoretical validation studies of ASnO3 (A= Ba, Ca, Sr) nanofibres for bioactivity applications. Int. J. Nano. 19(6–11), 554–565 (2022)

    Article  CAS  Google Scholar 

  34. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  35. Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146 (2015)

    Article  CAS  Google Scholar 

  36. N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system. J. Electroceram. 18, 339–346 (2007)

    Article  Google Scholar 

  37. J. Koruza, B. Malic, Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates. J. Eur. Ceram. Soc. 34, 1971–1979 (2014)

    Article  CAS  Google Scholar 

  38. J.G. Fisher, S.J.L. Kang, Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J. Eur. Ceram. Soc. 29, 2581–2588 (2009)

    Article  CAS  Google Scholar 

  39. J. Wu, D. Xiao, Y. Wang, J. Zhu, W. Shi, W. Wu, B. Zhang, J. Li, Phase structure, microstructure and ferroelectric properties of (1–x)[(K0.50Na0.50)0.94Li0.06](Nb0.94Sb0.06)O3–xCaTiO3 lead-free ceramics. J. Alloys Compd. 476, 782–786 (2009)

    Article  CAS  Google Scholar 

  40. V. Athikesavan, S. Bhuvana, G. Thilakavathi, Structural and electrical properties of Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ternary ceramic for energy storage application. Ferroelectr. Lett. Sect.Sect. 49(4–6), 104–110 (2022)

    Article  CAS  Google Scholar 

  41. M.A.L. Grace, R. Sambasivam, R.N. Perumal, V. Athikesavan, Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x [Bi0.5 (Na0.4K0.1) (Ti1−x Nbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2020)

    Article  CAS  Google Scholar 

  42. D. Lin, K.W. Kwok, H.L.W. Chan, Ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics. J. Alloys Compd. 481, 310–315 (2009)

    Article  CAS  Google Scholar 

  43. D.N. Binh, A. Hussain, Enhanced electric-field-induced strain at the ferroelectric-electrostrcitive phase boundary of yttrium-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free piezoelectric ceramics. J. Korean Phys. Soc. 5, 892–896 (2010)

    Google Scholar 

  44. K.N. Pham, A. Hussain, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)

    Article  CAS  Google Scholar 

  45. Z.W. Chen, J.Q. Hu, Piezoelectric and dielectric properties of Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Zr0.04Ti0.96)O3 lead free piezoelectric ceramics. Adv. Appl. Ceram. 107, 222 (2008)

    Article  CAS  Google Scholar 

  46. A. Herabut, A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x) LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954–2958 (1997)

    Article  CAS  Google Scholar 

  47. G.A. Kaur et al., Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method. J. Mater. Sci. Mater. Electron. 32, 23631–23644 (2021)

    Article  CAS  Google Scholar 

  48. C. Peng, J. Li, W. Gong, Preparation and properties of (Bi1/2Na1/2) TiO3-Ba (Ti, Zr) O3 lead-free piezoelectric ceramics. Mater. Lett. 59, 1576 (2005)

    Article  CAS  Google Scholar 

  49. Y. Lin, S. Zhao, Effects of doping Eu on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics. Mater. Sci. Eng. 99, 449–452 (2003)

    Article  Google Scholar 

  50. B. Parija, T. Badapanda, Diffuse phase transition, piezoelectric and optical study of Bi0·5Na0·5TiO3 ceramic. Bull. Mater. Sci. 35, 197–202 (2012)

    Article  CAS  Google Scholar 

  51. R.N. Perumal, V. Athikesavan, Structural and electrical properties of lanthanide-doped Bi0.5(Na0.80K0.20)0.5TiO3-SrZrO3 piezoelectric ceramics for energy-storage applications. J. Mater. Sci. Mater. Electron. 31, 4092–4105 (2020)

    Article  CAS  Google Scholar 

  52. N. Li, W. Ma, Effect of K content to lead-free SrBi4Ti4O15–(Na0.5Bi0.5)Bi4Ti4O15 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5505-2

    Article  Google Scholar 

  53. Y. Jiao et al., Energy storage performance of 0.55Bi0.5Na0.5TiO3–0.45SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route. Ceram. Int. 48(8), 10885–10894 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CMR Institute of Technology, Bangalore for Powder XRD and IISC Bangalore for SEM with EDAX characterization. National Institute of Technology—Trichy for Ferroelectric and piezoelectric characterization.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MALG: Supervision and revision of the manuscript. AS: Discussion, analysis of results, and revision of the manuscript. HT: Discussion, analysis of results, and revision of the manuscript. KP, AJJ, and VA: Results and Analysis. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Herri Trilaksana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony Lilly Grace, M., Suvitha, A., Trilaksana, H. et al. Temperature-dependent energy storage performance of La2O3-doped(1−x) Bi0.5(Na0.84K0.16)0.5TiO3xSrTiO3 multifunctional ceramics for piezoelectric sensor applications. Journal of Materials Research 38, 4902–4912 (2023). https://doi.org/10.1557/s43578-023-01200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01200-9

Keywords

Navigation