Abstract
In this work, La2O3-doped (1 − x) Bi 0.5(Na0.84K0.16)0.5TiO3–xSrTiO3 ceramics where x varies from 0.000 to 0.030 mol%, synthesized by solid-state reaction technique. The La2O3-doped BNKT–ST ceramics exhibit pure perovskite structures with a tetragonal (P4bm) phase structure. Computational structural properties of ceramics were computed VESTA program. The surface morphology of average grain size has decreased with increasing the substitution of La2O3 ions into the BNKT–ST ceramics. A decrease in the remnant polarization and the coercive field with an increase in the La2O3 concentration is attributed to the change in long-range ferroelectric order. When the La2O3 amount up to 0.020 mol%, doped samples show good piezoelectric coefficient (d33) exhibiting a maximum of ~ 187 pC/N. The prepared sample shows an energy storage density and efficiency of 0.90 J/cm3 and η (70%) at 0.97BNKT-0.030ST composition. La2O3-doped BNKT–ST ceramic optimistic application prospects in the field of high-power density energy storage capacitor and piezoelectric sensor applications.
Graphical abstract
Similar content being viewed by others
Data availability
The corresponding author can provide the data from the paper upon reasonable request.
References
S. Merrad et al., Physical properties of the perovskite SrTiO3-δ synthetized by chemical route. J. Mater. Sci. Mater. Electron. 34(3), 206 (2023)
V. Athikesavan, E. Ranjith Kumar, J. Suryakanth, Evaluation of the structural and electrical properties of perovskite NKN-LN ceramics for energy storage applications. New J. Chem. 46(42), 20433–20444 (2022)
T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)
K. Shibata, R. Wang, T. Tou, J. Koruza, Applications of lead-free piezoelectric materials. MRS Bull. 43, 612–616 (2018)
J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics (2018). https://doi.org/10.1016/j.jmat.2018.02.001
Q. Liu, Y. Zhang, J. Gao, Z. Zhou, D. Yang, K.Y. Lee, A. Studer, M. Hinterstein, K. Wang, X. Zhang, L. Li, J.F. Li, Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. Nat. Sci. Rev. 7, 355–365 (2020)
J. Yin, C. Zhao, Y. Zhang, J. Wu, Composition-induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. J. Am. Ceram. Soc. 100, 5601–5609 (2017)
A. Deng, J. Wu, Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics. J. Materiomics 6, 286–292 (2020)
O. Tokay, M. Yazici, A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics. Mater. Today Commun. 31, 103358 (2022)
C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140(45), 15252–15260 (2018)
M. Badole, S. Dwivedi, T. Pareek, S.A. Ahmed, S. Kumar, Significantly improved dielectric and piezoelectric properties of BiAlO3 modified potassium bismuth titanate lead-free ceramics. Mater. Sci. Engg: B 262, 114749 (2020)
D. Wang, G. Wang, Z. Lu, Z. Al-Jlaihawi, A. Feteira, Crystal structure, phase transitions and photoferroelectric properties of KNbO3-based lead-free ferroelectric ceramics: a brief review. Front. Mater. 7, 1–13 (2020)
W. Kang, Z. Zheng, Y. Li, R. Zhao, Study on piezoelectric, dielectric and dispersive phase transition of BaTiO3–BaZrO3–CaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 16244–16250 (2019)
V.V. Deshmukh, C.R. Ravikumar, M.R. Anil Kumar, S. Ghotekar, A. Naveen Kumar, A.A. Jahagirdar, H.C. Ananda Murthy, Structure, morphology and electrochemical properties of SrTiO3 perovskite: photocatalytic and supercapacitor applications. Environ. Chem. Ecotoxicol. 3, 241–248 (2021)
Y. Pu, P. Gao, T. Wu, X. Liu, Z. Dong, Dielectric and piezoelectric properties of Bi0.5K0.5TiO3-BaNb2O6 lead-free piezoelectric ceramics. J. Electron. Mater. 44, 332–340 (2015)
B. Jiang, T. Grande, S.M. Selbach, Local structure of disordered Bi0.5K0.5TiO3 investigated by pair distribution function analysis and first-principles calculations. Chem. Mater. 29, 4244–4252 (2017)
Y. Liu, Y. Ji, Y. Yang, Growth, properties and applications of Bi0.5Na0.5TiO3 ferroelectric nanomaterials. Nanomaterials 11, 1724 (2021)
K. Kumar, B. Kumar, Effect of Nb-doping on dielectric, ferroelectric and conduction behaviour of lead free Bi0.5(Na0.5K0.5)0.5TiO3 ceramic. Ceram. Int. 38, 1157–1165 (2012)
L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 39, 3057–3063 (2019)
M. Shi, Z. Si, E. Men, Z. Zhao, Y. Xu, R. Zuo, L. Guo, K. Hu, Mn-doped (Bi0.5Na0.5) TiO3 thin film with low leakage current density and high ferroelectric performance. J. Mater. Sci. Mater. Electron. 32, 7249–7258 (2021)
H.S. Han, W. Jo, J. Rödel, I.K. Hong, W.P. Tai, J.S. Lee, Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors. J. Phys. Condens. Matter 24, 365901 (2012)
F. Akram, A. Zeb, M. Habib, A. Ullah, P. Ahmad, S.J. Milne, A. Karoui, N. Ali, A. Kumar, S. Lee, C.W. Ahn, Piezoelectric performance of the binary K1/2Bi1/2TiO3–LiTaO3 relaxor-ferroelectric ceramics. Mater. Chem. Phys. 279, 125764 (2022)
L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin, Z. Liu, Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 4670–4679 (2017)
A. Hussain, A. Maqbool, R.A. Malik, J.H. Lee, Y.S. Sung, T.K. Song, M.H. Kim, Phase structure and electromechanical behavior of Li, Nb co-doped 0.95Bi0.5Na0.5TiO3–0.05BaZrO3 ceramics. Ceram. Int. 43, S204–S208 (2017)
V. Athikesavan, M. Arulmani, S. Bhuvana, Evaluation of the structure and electrical properties of (1–x) Bi0.5(Na0.80K0.20)0.5TiO3–xLiNbO3 ceramic composite for piezoelectric sensor applications. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979223502806
Y. Hou, J. Li, Z. Zheng, T. Ye, J. Ding, Rational co-doping of SrZrO3 and BaTiO3 in Bi0.5Na0.5TiO3 for extraordinary energy storage and electrocaloric performances. ACS Appl. Energy Mater. 5(3), 3477–3488 (2022)
X. Sang, P. Wang, L. Ai, Y. Li, J. Bu, Effect of La2O3 on the microstructure and electrical properties of 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics. Adv. Mater. Res. 284, 1408–1411 (2011)
A. Karuppanan et al., Synthesis and characterization of K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics for energy storage applications. J. Mater. Sci. Mater. Electron. 32, 717–726 (2021)
T.H. Dinh, H.Y. Lee, C.H. Yoon, R.A. Malik, Y.M. Kong, J.S. Lee, Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J. Korean Phys. Soc. 62, 1004–1008 (2013)
V.D.N. Tran, A. Ullah, T.H. Dinh, J.S. Lee, Effect of lanthanum doping on ferroelectric and strain properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3–0.04SrTiO3 lead-free ceramics. J. Electron. Mater. 45, 2639–2643 (2016)
S.M. Ramay, H. Kassim, N. Saleh Al Zayed, M. Shahabuddin, S.M. Ali, A. Mahmood, High-energy storage performance in lead-free lanthanum and lithium co-doped BaTi0.96Ni0.04O3 ferroelectric ceramics. Appl. Phys. A 128, 883 (2022)
R.N. Perumal, V. Athikesavan, P. Nair, Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3–SrTiO3 piezoelectric ceramics. Ceram. Int. 44, 13259–13266 (2018)
B. Madhavan, A. Suvitha, A. Steephen, Experimental and theoretical validation studies of ASnO3 (A= Ba, Ca, Sr) nanofibres for bioactivity applications. Int. J. Nano. 19(6–11), 554–565 (2022)
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)
Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146 (2015)
N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system. J. Electroceram. 18, 339–346 (2007)
J. Koruza, B. Malic, Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates. J. Eur. Ceram. Soc. 34, 1971–1979 (2014)
J.G. Fisher, S.J.L. Kang, Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J. Eur. Ceram. Soc. 29, 2581–2588 (2009)
J. Wu, D. Xiao, Y. Wang, J. Zhu, W. Shi, W. Wu, B. Zhang, J. Li, Phase structure, microstructure and ferroelectric properties of (1–x)[(K0.50Na0.50)0.94Li0.06](Nb0.94Sb0.06)O3–xCaTiO3 lead-free ceramics. J. Alloys Compd. 476, 782–786 (2009)
V. Athikesavan, S. Bhuvana, G. Thilakavathi, Structural and electrical properties of Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ternary ceramic for energy storage application. Ferroelectr. Lett. Sect.Sect. 49(4–6), 104–110 (2022)
M.A.L. Grace, R. Sambasivam, R.N. Perumal, V. Athikesavan, Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x [Bi0.5 (Na0.4K0.1) (Ti1−x Nbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2020)
D. Lin, K.W. Kwok, H.L.W. Chan, Ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics. J. Alloys Compd. 481, 310–315 (2009)
D.N. Binh, A. Hussain, Enhanced electric-field-induced strain at the ferroelectric-electrostrcitive phase boundary of yttrium-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free piezoelectric ceramics. J. Korean Phys. Soc. 5, 892–896 (2010)
K.N. Pham, A. Hussain, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)
Z.W. Chen, J.Q. Hu, Piezoelectric and dielectric properties of Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Zr0.04Ti0.96)O3 lead free piezoelectric ceramics. Adv. Appl. Ceram. 107, 222 (2008)
A. Herabut, A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x) LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954–2958 (1997)
G.A. Kaur et al., Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method. J. Mater. Sci. Mater. Electron. 32, 23631–23644 (2021)
C. Peng, J. Li, W. Gong, Preparation and properties of (Bi1/2Na1/2) TiO3-Ba (Ti, Zr) O3 lead-free piezoelectric ceramics. Mater. Lett. 59, 1576 (2005)
Y. Lin, S. Zhao, Effects of doping Eu on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics. Mater. Sci. Eng. 99, 449–452 (2003)
B. Parija, T. Badapanda, Diffuse phase transition, piezoelectric and optical study of Bi0·5Na0·5TiO3 ceramic. Bull. Mater. Sci. 35, 197–202 (2012)
R.N. Perumal, V. Athikesavan, Structural and electrical properties of lanthanide-doped Bi0.5(Na0.80K0.20)0.5TiO3-SrZrO3 piezoelectric ceramics for energy-storage applications. J. Mater. Sci. Mater. Electron. 31, 4092–4105 (2020)
N. Li, W. Ma, Effect of K content to lead-free SrBi4Ti4O15–(Na0.5Bi0.5)Bi4Ti4O15 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5505-2
Y. Jiao et al., Energy storage performance of 0.55Bi0.5Na0.5TiO3–0.45SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route. Ceram. Int. 48(8), 10885–10894 (2022)
Acknowledgments
The authors would like to thank the CMR Institute of Technology, Bangalore for Powder XRD and IISC Bangalore for SEM with EDAX characterization. National Institute of Technology—Trichy for Ferroelectric and piezoelectric characterization.
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Contributions
MALG: Supervision and revision of the manuscript. AS: Discussion, analysis of results, and revision of the manuscript. HT: Discussion, analysis of results, and revision of the manuscript. KP, AJJ, and VA: Results and Analysis. All the authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Antony Lilly Grace, M., Suvitha, A., Trilaksana, H. et al. Temperature-dependent energy storage performance of La2O3-doped(1−x) Bi0.5(Na0.84K0.16)0.5TiO3–xSrTiO3 multifunctional ceramics for piezoelectric sensor applications. Journal of Materials Research 38, 4902–4912 (2023). https://doi.org/10.1557/s43578-023-01200-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01200-9