Skip to main content
Log in

Machine-learned potentials for eucryptite: A systematic comparison

  • Invited Paper
  • FOCUS ISSUE: Machine-learned Potentials in Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three machine-learned potentials (SNAP, NNP, ACE) were created from the same training set of DFT energies and forces for a total of 1024 structures. DFT calculations were performed with the PBE functional and the Grimme D3 corrections. DFT energies can be reproduced within a few meV by the potentials. The potentials are evaluated how they predict structures, thermal expansion coefficients, and ionic conductivities of α- and β-eucryptite. Structures and thermal expansion coefficients are in good agreement with experimental values. All potentials reproduce the negative thermal expansion coefficient along the c axis of β-eucryptite, although only ACE calculates a negative thermal expansion coefficient for the volume. Ionic conductivities can be predicted only qualitatively correct. Molecular dynamics simulations performed with some of the potentials at higher temperatures can result in unphysical structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The software used for this work is available from Materials Design Inc. (http://www.materialsdesign.com).

References

  1. J.-R. Hill, C. M. Freeman, and L. Subramanian, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (Wiley-VCH, John Wiley and Sons, Inc., New York, 2000), pp. 141–216.

  2. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285, 316 (2015)

    CAS  Google Scholar 

  3. M.A. Wood, A.P. Thompson, J. Chem. Phys. 148, 241721 (2018)

    Google Scholar 

  4. M.A. Cusentino, M.A. Wood, A.P. Thompson, J. Phys. Chem. A 124, 5456 (2020)

    CAS  Google Scholar 

  5. A. Singraber, T. Morawietz, J. Behler, C. Dellago, J. Chem. Theory Comput. 15, 3075 (2019)

    CAS  Google Scholar 

  6. A. Singraber, J. Behler, C. Dellago, J. Chem. Theory Comput. 15, 1827 (2019)

    CAS  Google Scholar 

  7. R. Drautz, Phys. Rev. B 99, 014104 (2019)

    CAS  Google Scholar 

  8. H. Böhm, Phys. Status Solidi A 30, 531 (1975)

    Google Scholar 

  9. U.V. Alpen, H. Schulz, G.H. Talat, H. Böhm, Solid State Commun. 23, 911 (1977)

    Google Scholar 

  10. W. Nagel, H. Böhm, Solid State Commun. 42, 625 (1982)

    CAS  Google Scholar 

  11. R.T. Johnson, B. Morosin, M.L. Knotek, R.M. Biefeld, Phys. Lett. A 54, 403 (1975)

    Google Scholar 

  12. F. Shin-ichi, S. Satoshi, S. Kaduhiro, T. Hitoshi, Solid State Ion. 167, 325 (2004)

    CAS  Google Scholar 

  13. R. Sheil, Y.-C. Perng, J. Mars, J. Cho, B. Dunn, M.F. Toney, J.P. Chang, A.C.S. Appl, Mater. Interfaces 12, 56935 (2020)

    CAS  Google Scholar 

  14. B. Singh, M.K. Gupta, R. Mittal, M. Zbiri, S. Rols, S.J. Patwe, S.N. Achary, H. Schober, A.K. Tyagi, S.L. Chaplot, Phys. Chem. Chem. Phys. 19, 15512 (2017)

    CAS  Google Scholar 

  15. B. Singh, M.K. Gupta, R. Mittal, S.L. Chaplot, J. Mater. Chem. A 6, 5052 (2018)

    CAS  Google Scholar 

  16. Y. Niu, W. Li, L. Liu, M.V.M. Nitou, J. Nie, Z. Mei, F. Cao, W. Lv, Appl. Phys. Lett. 121, 243904 (2022)

    CAS  Google Scholar 

  17. A.I. Lichtenstein, R.O. Jones, H. Xu, P.J. Heaney, Phys. Rev. B 58, 6219 (1998)

    CAS  Google Scholar 

  18. R. Sprengard, K. Binder, M. Brändle, U. Fotheringham, J. Sauer, W. Pannhorst, J. Non-Cryst, Solids 274, 264 (2000)

    CAS  Google Scholar 

  19. B. Narayanan, A.C.T. van Duin, B.B. Kappes, I.E. Reimanis, C.V. Ciobanu, Modelling Simul. Mater. Sci. Eng. 20, 015002 (2011)

    Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    CAS  Google Scholar 

  22. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Google Scholar 

  23. S. Grimme, J. Comp. Chem. 25, 1463 (2004)

    CAS  Google Scholar 

  24. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    CAS  Google Scholar 

  25. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    CAS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996)

    CAS  Google Scholar 

  27. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    CAS  Google Scholar 

  28. Materials Design Inc., MedeA 3.7 (Materials Exploration and Design Analysis, 2023). www.materialsdesign.com

  29. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    Google Scholar 

  30. P. Daniels, C.A. Fyfe, Am. Mineral. 86, 279 (2001)

    CAS  Google Scholar 

  31. H. Schulz, J. Am. Ceram. Soc. 57, 313 (1974)

    CAS  Google Scholar 

  32. A. Rohskopf, C. Sievers, N. Lubbers, M.A. Cusentino, J. Goff, J. Janssen, M. McCarthy, D.M.O. de Zapiain, S. Nikolov, K. Sargsyan, D. Sema, E. Sikorski, L. Williams, A.P. Thompson, M.A. Wood, J. Open Source Softw. 8, 5118 (2023)

    Google Scholar 

  33. A. Singraber, M. P. Bircher, S. Reeve, D. W. H. Swenson, J. Lauret, P. David, CompPhysVienna/n2p2: Version 2.1.4 (2021). https://doi.org/10.5281/zenodo.4750573

  34. A. Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M. Mrovec, R. Drautz, Phys. Rev. Mater. 6, 013804 (2022)

    CAS  Google Scholar 

  35. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    Google Scholar 

  36. G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, M. Ceriotti, J. Chem. Phys. 148, 241730 (2018)

    Google Scholar 

  37. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys. 148, 241709 (2018)

    CAS  Google Scholar 

  38. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Google Scholar 

  39. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    CAS  Google Scholar 

  40. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022)

    CAS  Google Scholar 

  41. Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124, 731 (2020)

    CAS  Google Scholar 

  42. J. Birkenstock, Strukturen und Phasen des β-Eukryptits sowie die Sammlung von Beugungsdaten mit axialen q-Scans, PhD Thesis (Johannes Gutenberg-Universität Mainz, 2002)

  43. P. Kubisiak, A. Eilmes, J. Phys. Chem. B 124, 9680 (2020)

    CAS  Google Scholar 

  44. Y. Chen, S. Manna, C.V. Ciobanu, I.E. Reimanis, J. Am. Ceram. Soc. 101, 347 (2018)

    CAS  Google Scholar 

  45. Z. Deng, C. Chen, X.-G. Li, S.P. Ong, Npj Comput. Mater. 5, 1 (2019)

    Google Scholar 

  46. Schott AG, Intern. Commun. (2023)

  47. J. Zhang, A. Celestian, J.B. Parise, H. Xu, P.J. Heaney, Am. Mineral. 87, 566 (2002)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by J-RH. The first draft of the manuscript was written by J-RH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jörg-Rüdiger Hill.

Ethics declarations

Conflict of interest

Jörg-Rüdiger Hill is an employee and shareholder of Materials Design Inc. which distributes the MedeA software environment used for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, JR., Mannstadt, W. Machine-learned potentials for eucryptite: A systematic comparison. Journal of Materials Research 38, 5188–5197 (2023). https://doi.org/10.1557/s43578-023-01183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01183-7

Keywords

Navigation