Skip to main content

Advertisement

Log in

Effect of radial shear rolling on grain refinement and mechanical properties of the Al–Mg–Sc alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method of obtaining bars from the Al–Mg–Sc alloy by radial-shear rolling (RSR) and its effect on the microstructure and mechanical properties were discussed. After RSR at different temperatures (400, 300, 250 °C), a gradient microstructure forms over the cross-section of the bars. From the surface to the half of radius, initial microstructure transform to an ultrafine-grained dynamically recrystallized structure with equiaxed grains (0.5 to 2 µm) and a well-developed high angle grain boundaries net. Near the center of the bars, a deformed fiber structure of grains with well-developed low angle grain boundaries and an average subgrain size of 5 µm was obtained. The alloy structure has a deep hierarchical arrangement characterized by the existence of submicron size particles and 10–20 nm sized Al3(Zr,Sc) nanoparticles. The mechanical properties (ultimate tensile strength 436 MPa, yield strength 350 MPa) are superior to those of almost all studied deformation methods for this alloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author (Yu.V. Gamin) on reasonable request.

Code availability

Not applicable.

References

  1. S.V. Astafurov, E.V. Melnikov, K.A. Reunova, MYu. Panchenko, E.A. Zagibalova, K.V. Krukovskii, E.G. Astafurova, Mater. Sci. Eng. A 851, 143628 (2022). https://doi.org/10.1016/j.msea.2022.143628

    Article  CAS  Google Scholar 

  2. Q. Hou, T. Wang, J. Zhou, X. Zhou, Qi. Hao, J. Qiao, Mater. Sci. Eng. A 851, 143624 (2022). https://doi.org/10.1016/j.msea.2022.143624

    Article  CAS  Google Scholar 

  3. H. Kim, J.H. Ahn, S.Z. Han, J. Jo, H. Baik, M. Kim, H.N. Han, J. Alloys Compd. 832, 155059 (2020). https://doi.org/10.1016/j.jallcom.2020.155059

    Article  CAS  Google Scholar 

  4. Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink, Acta Mater. 109, 202–212 (2016). https://doi.org/10.1016/j.actamat.2016.02.050

    Article  CAS  Google Scholar 

  5. J.A. Muñoz, T. Khelfa, A. Komissarov, J.-M. Cabrera, Mater. Sci. Eng. A 805, 140624 (2020). https://doi.org/10.1016/j.msea.2020.140624

    Article  CAS  Google Scholar 

  6. V. Segal, Materials 11, 1175 (2018). https://doi.org/10.3390/ma11071175

    Article  CAS  Google Scholar 

  7. R.G. Chembarisova, E.A. Sarkeeva, I.V. Alexandrov, W. Wei, J. Phys. Conf. Ser. 1431, 12065 (2020). https://doi.org/10.1088/1742-6596/1431/1/012065

    Article  CAS  Google Scholar 

  8. H.A. Lanjewar, S. Naghdy, L.A.I. Kestens, P. Verleysen, J. Phys. 1270(1), 012022 (2019). https://doi.org/10.1088/1742-6596/1270/1/012022

    Article  CAS  Google Scholar 

  9. J.A. Muñoz, O.F. Higuera, A.H. Expósito, A. Boulaajaj, R.E. Bolmaro, F.D. Dumitru, P.R. Calvillo, A.M. Jorge, J.M. Cabrera, Int. J. Adv. Manuf. Technol. 98, 2917–2932 (2018). https://doi.org/10.1007/s00170-018-2353-7

    Article  Google Scholar 

  10. P. Verleysen, H. Lanjewar, J. Mater. Process. Technol. 276, 116393 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116393

    Article  CAS  Google Scholar 

  11. D.M. Fouad, A. Moataz, W.H. El-Garaihy, H.G. Salem, Mater. Sci. Eng. A 764, 138216 (2019). https://doi.org/10.1016/j.msea.2019.138216

    Article  CAS  Google Scholar 

  12. S.S.H. Faregh, A. Hassani, Int. J. Mater. Form. 11(2), 175–184 (2018). https://doi.org/10.1007/s12289-017-1340-0

    Article  Google Scholar 

  13. P. Khamsepour, M. Kazeminezhad, Mater. Chem. Phys. 239, 122022 (2020). https://doi.org/10.1016/j.matchemphys.2019.122022

    Article  CAS  Google Scholar 

  14. P.V. Patrin, B.V. Karpov, A.S. Aleshchenko, S.P. Galkin, Steel Transl. 50(1), 42–45 (2020). https://doi.org/10.3103/S096709122001009X

    Article  Google Scholar 

  15. S.P. Galkin, A.S. Aleschenko, B.A. Romantsev, Yu.V. Gamin, R.V. Iskhakov, Metallurgist 65, 185–219 (2021). https://doi.org/10.1007/s11015-021-01147-4

    Article  CAS  Google Scholar 

  16. S.P. Galkin, A.S. Aleshchenko, Y.V. Gamin, Russ. J. Non-ferrous Metals. 63, 328–335 (2022). https://doi.org/10.3103/S1067821222030063

    Article  Google Scholar 

  17. D.V. Ovchinnikov, A.A. Bogatov, M.V. Yerpalov, Chernye Met. 3, 18–21 (2012)

    Google Scholar 

  18. S.P. Galkin, B.A. Romantsev, E.A. Kharitonov, CIS Iron Steel Rev. 9, 35–39 (2014)

    Google Scholar 

  19. B.V. Karpov, P.V. Patrin, S.P. Galkin, E.A. Kharitonov, I.B. Karpov, Metallurgist 61, 884–890 (2018). https://doi.org/10.1007/s11015-018-0581-6

    Article  CAS  Google Scholar 

  20. S.P. Galkin, Steel Transl. 7, 63–66 (2004)

    Google Scholar 

  21. S.P. Galkin, Yu.V. Gamin, A.S. Aleshchenko, B.A. Romantsev, Chernye Met. 12, 51–58 (2021). https://doi.org/10.17580/chm.2021.12.09

    Article  Google Scholar 

  22. Yu.V. Gamin, S.P. Galkin, X.D. Nguyen, T.K. Akopyan, Russ. J. Non-ferrous Met. 63, 417–425 (2022). https://doi.org/10.3103/S1067821222040071

    Article  Google Scholar 

  23. T.H. Fang et al., Science 331, 1587–1590 (2011). https://doi.org/10.1126/science.1200177

    Article  CAS  Google Scholar 

  24. M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, X.Z. Liao, Int. J. Plast. 123, 178–195 (2019)

    Article  CAS  Google Scholar 

  25. Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362, 559 (2018)

    CAS  Google Scholar 

  26. S.N. Lezhnev, A.B. Naizabekov, E.A. Panin, I.E. Volokitina, A.S. Arbuz, Metallurgist 64, 1150–1159 (2021). https://doi.org/10.1007/s11015-021-01100-5

    Article  CAS  Google Scholar 

  27. A. Stefanik, P. Szota, S. Mróz, Arch. Metall. Mater. 65, 329–335 (2020). https://doi.org/10.24425/amm.2020.131734

    Article  CAS  Google Scholar 

  28. A. Arbuz, A. Kawalek, K. Ozhmegov, H. Dyja, E. Panin, A. Lepsibayev, S. Sultanbekov, R. Shamenova, Materials 13(19), 4306 (2020). https://doi.org/10.3390/ma13194306

    Article  CAS  Google Scholar 

  29. A.B. Naizabekov, S.N. Lezhnev, E. Panin, Solid State Phenom. 316, 246–251 (2021). https://doi.org/10.4028/www.scientific.net/ssp.316.246

    Article  Google Scholar 

  30. A. Stefanik, P. Szota, S. Mróz, M. Wachowski, Materials 15(3), 954 (2022). https://doi.org/10.3390/ma15030954

    Article  CAS  Google Scholar 

  31. E.V. Naydenkin, I.V. Ratochka, I.P. Mishin, O.N. Lykova, Russ. Phys. J. 58, 1068–1073 (2015). https://doi.org/10.1007/s11182-015-0613-7

    Article  CAS  Google Scholar 

  32. Y.V. Gamin, J.A. Muñoz Bolaños, A.S. Aleschenko, A.A. Komissarov, N.S. Bunits, D.A. Nikolaev, A.V. Fomin, V.V. Cheverikin, Mater. Sci. Eng. A 822, 141676 (2021). https://doi.org/10.1016/j.msea.2021.141676

    Article  CAS  Google Scholar 

  33. K.E. Lukashevich, V.A. Sheremetyev, Kudryashova, M.A. Derkach, V.A. Andreev, S.P. Galkin, S.D. Prokoshkin, V. Brailovski, Lett. Mater. 12, 54–58 (2022). https://doi.org/10.22226/2410-3535-2022-1-54-58

    Article  Google Scholar 

  34. Ta Dinh Xuan, V.A. Sheremetyev, A.A. Kudryashova, S.P. Galkin, V.A. Andreev, S.D. Prokoshkin, V. Brailovski, Russ, J. Non-ferrous Met. 61, 271–279 (2020). https://doi.org/10.3103/S1067821220030165.

  35. T. Akopyan, Y. Gamin, S. Galkin, A. Koshmin, T. Kin, V. Cheverikin, J. Mater. Sci. 57, 8298–8313 (2022). https://doi.org/10.1007/s10853-022-07167-y

    Article  CAS  Google Scholar 

  36. Y.V. Gamin, S.P. Galkin, B.A. Romantsev, A.N. Koshmin, A.V. Goncharuk, M.V. Kadach, Metallurgist 65, 650–659 (2021). https://doi.org/10.1007/s11015-021-01202-0

    Article  Google Scholar 

  37. T. Akopyan, Y. Gamin, S. Galkin, A. Prosviryakov, A. Aleshchenko, M. Noshin, A. Koshmin, A. Fomin, Mater. Sci. Eng. A 786, 139–424 (2020). https://doi.org/10.1016/j.msea.2020.139424

    Article  CAS  Google Scholar 

  38. E.I. Panov, Metallurgist 50, 199–208 (2006). https://doi.org/10.1007/s11015-006-0064-z

    Article  CAS  Google Scholar 

  39. A.A. Bogatov, E.I. Panov, Metallurgist 57, 434–441 (2013). https://doi.org/10.1007/s11015-013-9751-8

    Article  CAS  Google Scholar 

  40. E.I. Panov, Metallurgist 50, 277–282 (2006). https://doi.org/10.1007/s11015-006-0076-8

    Article  CAS  Google Scholar 

  41. Y.A. Filatov, Met. Sci. Heat Treat. 38, 271–274 (1996). https://doi.org/10.1007/BF01395830

    Article  Google Scholar 

  42. V.G. Davydov, T.D. Rostova, V.V. Zakharov, Yu.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A 280(1), 30–36 (2000). https://doi.org/10.1016/S0921-5093(99)00652-8

    Article  Google Scholar 

  43. Yu.A. Filatov, V.I. Yelagin, V.V. Zakharov, Mater. Sci. Eng. A 280, 97–101 (2000). https://doi.org/10.1016/S0921-5093(99)00673-5

    Article  Google Scholar 

  44. X. Han, S. Wang, B. Wei, S. Pan, G. Liao, W. Li, Y. Wei, Acta Metall. Sin. 35, 948–960 (2022). https://doi.org/10.1007/s40195-021-01328-9

    Article  CAS  Google Scholar 

  45. B.V. Ovsyannikov, Proceedings of the 12th International Conference on Aluminium Alloys, The Japan Institute of Light Metals, 1996–2001 (2010).

  46. Z. Ahmad, A. Aleem, M. Abbas, Mater. Sci. Appl. 2, 244–250 (2011). https://doi.org/10.4236/msa.2011.24031

    Article  CAS  Google Scholar 

  47. E.V. Aryshenskii, J. Hirsch, S.V. Konovalov, U. Prahl, Metall Mater. Trans. 50, 5782–5799 (2019). https://doi.org/10.1007/s11661-019-05480-x

    Article  CAS  Google Scholar 

  48. T.G. Nieh, R. Kaibyshev, L.M. Hsiung, N. Nguyen, J. Wadsworth, Scr. Mater. 36, 1011–1016 (1997). https://doi.org/10.1016/S1359-6462(96)00479-4

    Article  CAS  Google Scholar 

  49. O.S. Sitdikov, E.V. Avtokratova, R.I. Babicheva, Phys. Met. Metallogr. 110, 153–161 (2010). https://doi.org/10.1134/S0031918X10080053

    Article  Google Scholar 

  50. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S.V.S.N. Murty, M.J.N.V. Prasad, B.P. Kashyap, J. Alloys Compd. 673, 182–194 (2016). https://doi.org/10.1016/j.jallcom.2016.02.207

    Article  CAS  Google Scholar 

  51. O.S. Sitdikov, E.V. Avtokratova, B.I. Atanov, M.V. Markushev, Inorg. Mater. 58, 544–554 (2022). https://doi.org/10.1134/S0020168522050107

    Article  CAS  Google Scholar 

  52. O.S. Sitdikov, E.V. Avtokratova, S.V. Krymskyi, R.R. Ilyasov, M.V. Markushev, Inorg. Mater. 57, 101–111 (2021). https://doi.org/10.1134/S0020168521010131

    Article  CAS  Google Scholar 

  53. O.S. Sitdikov, E.V. Avtokratova, O.E. Mukhametdinova, R.N. Garipova, M.V. Markushev, Phys. Met. Metallogr. 118, 1215–1224 (2017). https://doi.org/10.1134/S0031918X17120122

    Article  CAS  Google Scholar 

  54. M. Li, Q. Pan, Y. Shi, Y. Wang, Mater. Sci. Eng. A 611, 142–151 (2014). https://doi.org/10.1016/j.msea.2014.05.087

    Article  CAS  Google Scholar 

  55. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, 1st edn. (Publishing Butterworths, London, 1976), p.367

    Book  Google Scholar 

  56. Y.V. Gamin, A.N. Koshmin, A.P. Dolbachev, S.P. Galkin, A.S. Aleschenko, M.V. Kadach, Russ. J. Non-ferrous Met. 61, 646–657 (2020). https://doi.org/10.3103/S1067821220060085

    Article  Google Scholar 

  57. Y. Gamin, T. Akopyan, A. Koshmin, A. Dolbachev, A. Aleshchenko, S.P. Galkin, B.A. Romantsev, Int. J. Adv. Manuf. Technol. 108, 695–704 (2020). https://doi.org/10.1007/s00170-020-05227-8

    Article  Google Scholar 

  58. T.K. Akopyan, N.A. Belov, A.S. Aleshchenko, S.P. Galkin, Y.V. Gamin, M.V. Gorshenkov, V.V. Cheverikin, P.K. Shurkin, Mater. Sci. Eng. A 746, 134–144 (2019). https://doi.org/10.1016/j.msea.2019.01.029

    Article  CAS  Google Scholar 

  59. N. Kumar, R.S. Mishra, Mater. Sci. Eng. A 580, 175–183 (2013). https://doi.org/10.1016/j.msea.2013.05.006

    Article  CAS  Google Scholar 

  60. L. Jiang, Z. Zhang, Y. Bai, S. Li, W. Mao, Crystals 12, 673 (2022). https://doi.org/10.3390/cryst12050673

    Article  CAS  Google Scholar 

  61. H. Du, S. Zhang, B. Zhang, X. Tao, Z. Yao, N. Belov, S. van der Waag, Z. Liu, J. Mater. Sci. 56, 16145–16157 (2021). https://doi.org/10.1007/s10853-021-06310-5

    Article  CAS  Google Scholar 

  62. M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Mater. Sci. Eng. A 598, 141–146 (2014). https://doi.org/10.1016/j.msea.2013.12.103

    Article  CAS  Google Scholar 

  63. I. Belokonova, S. Sidelnikov, D. Voroshilov, O. Yakivyuk, Magnitogorsk Rolling Practice 2020, Materials of the V International Youth Scientific and Technical Conference. ed. A.G. Korchunov. Magnitogorsk 33–35 (2020).

  64. S.V. Dobatkin, V.V. Zakharov, V.N. Perevezentsev, T.D. Rostova, V.N. Kopylov, G.I. Raab, Tech. Light Alloys 1, 74–84 (2010)

    Google Scholar 

  65. N.G. Baidin, Yu.A. Filatov, Tech. Light Alloys 4, 12–17 (2016)

    Google Scholar 

  66. Yu.A. Filatov, Tech. Light Alloys 2, 12–22 (2021). https://doi.org/10.24412/0321-4664-2021-2-12-22

    Article  CAS  Google Scholar 

  67. R. Kaibyshev, E. Avtokratova O.S. Sitdikov, Mater. Sci. Forum 638–642, 1952–1958 (2010)

  68. C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, S.R. Methuku, Comput Elec. Agric. 63, 168–182 (2008). https://doi.org/10.1016/j.compag.2008.02.007

    Article  Google Scholar 

  69. V.A. Kostin, G.M. Grigorenko, Electrometall. Today 04, 52–61 (2018). https://doi.org/10.15407/sem2018.04.04

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 21–79-00144) (FEM, RSR, tensile tests, EBSD) and federal academic leadership program Priority 2030 of NUST MISIS (TEM, SEM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YG, TA; methodology: TA, YG, SG; formal analysis and investigation: XDN, VC, AF; writing—original draft preparation: YG, SG, TA; writing—review and editing: TA, YG, SG; funding acquisition: YG; resources RAV, OBV, ESY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yury Gamin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1402 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamin, Y., Akopyan, T., Galkin, S. et al. Effect of radial shear rolling on grain refinement and mechanical properties of the Al–Mg–Sc alloy. Journal of Materials Research 38, 4542–4558 (2023). https://doi.org/10.1557/s43578-023-01170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01170-y

Keywords

Navigation