Skip to main content
Log in

Molecular dynamics simulations using machine learning potential for a-Si:H/c-Si interface: Effects of oxygen and hydrogen on interfacial defect states

  • Invited Paper
  • FOCUS ISSUE: Machine-learned Potentials in Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of a-Si:H/c-Si models with and without an oxygen layer at the interface were performed using a machine learning potential (MLP) that was efficiently trained using an on-the-fly scheme with ab initio molecular dynamics. The relaxation processes up to 1 ns at 500 and 700 K were simulated using MLP, and snapshots were evaluated using ab initio calculations to examine the in-gap states that could significantly affect the solar cell performance. The results showed that oxygen atoms passivated surface dangling bonds on c-Si, but simultaneously generated strain-induced in-gap states at the Si–O/a-Si interface. The hydrogen atoms suppressed the recrystallization of a-Si, distributed in a-Si particularly at the Si–O/a-Si interface because of the repulsive potential of the Si–O layer and contributed to the reduction of the in-gap states. Our results support experimental observation where optimization of the a-Si:H/O/c-Si interface could improve the performance of solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. T.G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Nat. Energy 4, 914 (2019)

    Article  CAS  Google Scholar 

  2. E. Kobayashi, S.D. Wolf, J. Levrat, A. Descoeudres, M. Despeisse, F.-J. Haug, C. Ballif, Sol. Energy Mater. Sol. Cells 173, 43 (2017)

    Article  CAS  Google Scholar 

  3. L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, Sol. Energy Mater. Sol. Cells 93, 905 (2009)

    Article  CAS  Google Scholar 

  4. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn. J. Appl. Phys. 31, 3518 (1992)

    Article  CAS  Google Scholar 

  5. O. Arriaga Arruti, A. Virtuani, C. Ballif, Prog. Photovolt: Res. and Appl. 31, 664 (2023)

  6. H. Fujiwara, M. Kondo, Appl. Phys. Lett. 90, 013503 (2007)

    Article  Google Scholar 

  7. K. Gotoh, M. Wilde, S. Ogura, Y. Kurokawa, K. Fukutani, N. Usami, Appl. Surf. Sci. 567, 150799 (2021)

    Article  CAS  Google Scholar 

  8. K. Kohno, M. Ishimaru, Jpn. J. Appl. Phys. 57, 095503 (2018)

    Article  Google Scholar 

  9. G. Fugallo, A. Mattoni, Phys. Rev. B 89, 045301 (2014)

    Article  Google Scholar 

  10. C. Krzeminski, Q. Brulin, V. Cuny, E. Lecat, E. Lampin, F. Cleri, J. Appl. Phys. 101, 123506 (2007)

    Article  Google Scholar 

  11. B.C. Pan, R. Biswas, J. Appl. Phys. 96, 6247 (2004)

    Article  CAS  Google Scholar 

  12. M. Tosolini, L. Colombo, M. Peressi, Phys. Rev. B 69, 075301 (2004)

    Article  Google Scholar 

  13. I. Santos, M. Cazzaniga, G. Onida, L. Colombo, J. Phys.: Condens. Matter 26, 095001 (2014)

    CAS  Google Scholar 

  14. M. Nolan, M. Legesse, G. Fagas, Phys. Chem. Chem. Phys. 14, 15173 (2012)

    Article  CAS  Google Scholar 

  15. C.G. Van de Walle, J. Vac. Sci. Technol. B 13, 1635 (1995)

    Article  Google Scholar 

  16. M. Peressi, L. Colombo, S. de Gironcoli, Phys. Rev. B 64, 193303 (2001)

    Article  Google Scholar 

  17. K. Jarolimek, E. Hazrati, R.A. de Groot, G.A. de Wijs, Phys. Rev. Applied 8, 014026 (2017)

    Article  Google Scholar 

  18. R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, M. Bokdam, Phys. Rev. Lett. 122, 225701 (2019)

    Article  CAS  Google Scholar 

  19. R. Jinnouchi, K. Miwa, F. Karsai, G. Kresse, R. Asahi, J. Phys. Chem. Lett. 11, 6946 (2020)

    Article  CAS  Google Scholar 

  20. K. Jarolimek, R.A. de Groot, G.A. de Wijs, M. Zeman, Phys. Rev. B 79, 155206 (2009)

    Article  Google Scholar 

  21. S. Kugler, L. Pusztai, L. Rosta, P. Chieux, R. Bellissent, Phys. Rev. B 48, 7685 (1993)

    Article  CAS  Google Scholar 

  22. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  24. E.L. Mathé, A. Naudon, M. Elliq, E. Fogarassy, S. de Unamuno, Appl. Surf. Sci. 54, 392 (1992)

    Article  Google Scholar 

  25. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  CAS  Google Scholar 

  26. B. Weber, D.M. Stock, K. Gärtner, Mater. Sci. Eng., B 71, 213 (2000)

    Article  Google Scholar 

  27. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  29. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    Article  CAS  Google Scholar 

  30. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  31. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013)

    Article  Google Scholar 

  32. L. Himanen, M.O.J. Jäger, E.V. Morooka, F. Federici Canova, Y.S. Ranawat, D.Z. Gao, P. Rinke, A.S. Foster, Comput. Phys. Commun. 247, 106949 (2020)

    Article  CAS  Google Scholar 

  33. J. Mavračić, F.C. Mocanu, V.L. Deringer, G. Csányi, S.R. Elliott, J. Phys. Chem. Lett. 9, 2985 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Kazuhiro Gotoh, Noritaka Usami, Alex Kutana, and Pradeep Varadwaj for fruitful discussions. We also thank Ferenc Karsai and Georg Kresse for their support with the VASP-MLP code.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Computations of MLP done by TS with technical support by RJ; geometric analysis done by TS and JM; electronic structure analyses by RA and RJ; supervision RA; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ryoji Asahi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2380 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semba, T., McKibbin, J., Jinnouchi, R. et al. Molecular dynamics simulations using machine learning potential for a-Si:H/c-Si interface: Effects of oxygen and hydrogen on interfacial defect states. Journal of Materials Research 38, 5151–5160 (2023). https://doi.org/10.1557/s43578-023-01155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01155-x

Keywords

Navigation