Skip to main content
Log in

Production and electrochemical properties of the sol–gel α-Al2O3 coated stainless steel foams

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

17–4 PH martensitic stainless steel foams are frequently used in surgery and dental tools. Porous morphology may increase the usage fields of these foams for biomedical aims. In this work, highly porous 17–4 PH martensitic stainless steel foams were produced with the space holder technique and coated with α-Al2O3 to improve chemical stability and surface properties. Mixing stainless steel, boron powders, and urea with polyvinyl alcohol, pressing the mixture at 180 MPa, removing the urea by dissolving it in water at room temperature, and then removing the binder in the raw pellets through sintering were sequentially performed to prepare the foams. Afterwards, the foams were dip-coated in sol–gel derived AlOOH gel for 7–14-21 days and, finally, heat-treated at 1260 °C to transform AlOOH into α-Al2O3. The physical, microstructural, and electrochemical properties of the foams were characterized. The metal ion release from the samples decreased thanks to the α-Al2O3 layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. L. Dahil, S. Başpınar, A. Karabulut, Damping effect of porous materials. AKU-J. Sci. 11, 015701 (2011)

    Google Scholar 

  2. J. Banhart, Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater Sci. 46(6), 559–632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  3. L.J. Gibson, M.F. Ashby, Cellular Solids-Structures and Properties, 2nd edn. (Cambridge University Press, England, 1997)

    Book  Google Scholar 

  4. H.I. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel. Scr. Mater. 55(2), 203–206 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.039

    Article  CAS  Google Scholar 

  5. M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur, High-porosity titanium, stainless steel and superalloy parts. Adv. Eng. Mater. 2(4), 196–199 (2000). https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3c196::AID-ADEM196%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  6. C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg. Scripta Mater. 45(10), 1147–1153 (2001). https://doi.org/10.1016/S1359-6462(01)01132-0

    Article  CAS  Google Scholar 

  7. G. Kotan, Production, and Characterization of Porous Titanium and Ti-6Al-4V, Master Thesis, Middle East Technical University, 2006.

  8. N. Tuncer, Production, and Characterization of Metallic Foams, Master Thesis, Anadolu University, 2006.

  9. N. Wenjuan, B. Chenguang, Q. Guibao, W. Qiang, Processing and properties of porous titanium using space holder technique. Mater. Sci. Eng. A 506(1–2), 148–151 (2006). https://doi.org/10.1016/j.msea.2008.11.022

    Article  CAS  Google Scholar 

  10. Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles. Scr. Mater. 56(5), 341–344 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.010

    Article  CAS  Google Scholar 

  11. D.C. Dunand, Processing of Ti foams. Adv. Eng. Mater. 6(6), 369–376 (2004). https://doi.org/10.1002/adem.200405576

    Article  CAS  Google Scholar 

  12. Y. Kenar, Investigation of the Properties of Porous Stainless Steels Coated with Boehmitic Alumina by Dip Coating Method, Master Thesis, Istanbul University-Cerrahpasa, 2019.

  13. İ. Mutlu, Microstructural and Mechanical Properties of Porous Martensitic Stainless Steel Obtained by Powder Metallurgy Method, Ph.D. Thesis, Istanbul University, 2011.

  14. D. Canturk Oz, Investigation of the Physicochemical Properties of Alumina Produced by Sol-Gel Method, Master Thesis, Hitit University, 2018.

  15. A. Yelten, S. Yilmaz, F.N. Oktar, Sol-gel derived alumina-hydroxyapatite-tricalcium phosphate porous composite powders. Ceram. Int. 38(4), 2659–2665 (2012). https://doi.org/10.1016/j.ceramint.2011.11.032

    Article  CAS  Google Scholar 

  16. Zarzycki, Past and present of sol-gel science and technology. J. Sol-Gel Sci. Technol. 8, 17–22 (1997). https://doi.org/10.1023/A:1026480424495

    Article  CAS  Google Scholar 

  17. D.R. Uhlmann, G. Teowee, Sol-gel science, and technology: Current state and future prospects. J. Sol-Gel. Sci. Technol. 13, 153–162 (1998). https://doi.org/10.1023/A:1008692430779

    Article  CAS  Google Scholar 

  18. R. Gvishi, Fast sol-gel technology: From fabrication to applications. J. Sol-Gel. Sci. Technol. 50, 241–253 (2009). https://doi.org/10.1007/s10971-008-1885-y

    Article  CAS  Google Scholar 

  19. J.D. Mackenzie, Sol-gel research-achievements since 1981 and prospects for the future. J. Sol-Gel. Sci. Technol. 26, 23–27 (2003). https://doi.org/10.1023/A:1020720831098

    Article  CAS  Google Scholar 

  20. F.B. Ozler, Surface Modification of Titanium and Alloys by Sol-Gel Dip-Coating Method, Master Thesis, Istanbul Technical University, 2007.

  21. J. Chandradass, S.B. Dong, M. Balasubramanian, Synthesis and characterization of sol-gel alumina fiber by seeding α-alumina through extended ball milling. Mater. Manuf. Process. 23(8), 786–790 (2008). https://doi.org/10.1080/10426910802382098

    Article  CAS  Google Scholar 

  22. R.B. Bagwell, G.L. Messing, Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3. J. Am. Ceram. Soc. 82(4), 825–832 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01842.x

    Article  CAS  Google Scholar 

  23. Y. Yang, X. Jiao, B. Chen et al., Preparation of fine-grained α-alumina powder from seeded boehmite. J. Nanopart. Res. 15, 1855–1863 (2013). https://doi.org/10.1007/s11051-013-1855-3

    Article  CAS  Google Scholar 

  24. M. Kumagai, G.L. Messing, Controlled transformation and sintering of a boehmite sol-gel by α-alumina seeding. J. Am. Ceram. Soc. 68(91), 500–505 (1985)

    Article  CAS  Google Scholar 

  25. F.S. Yen, H.S. Lo, H.L. Wen et al., θ- to α-Phase transformation subsystem induced by α-Al2O3-seeding in boehmite-derived nano-sized alumina powders. J. Cryst. Growth. 249(1–2), 283–293 (2003). https://doi.org/10.1016/S0022-0248(02)02148-6

    Article  CAS  Google Scholar 

  26. A. Yelten, S. Yilmaz, A novel approach on the synthesis and characterization of bioceramic composites. Ceram. Int. 45(12), 15375–15384 (2019). https://doi.org/10.1016/j.ceramint.2019.05.031

    Article  CAS  Google Scholar 

  27. B.E. Yoldas, Alumina sol preparation from alkoxides. Am. Ceram. Soc. Bull. 54(3), 289–290 (1975)

    CAS  Google Scholar 

  28. M. Dressler, M. Nofz, M. Gemeinert, Rheology, UV-vis transparency and particle size of modified Yoldas sols. J. Sol-Gel. Sci. Technol. 38(3), 261–269 (2006). https://doi.org/10.1007/s10971-006-6634-5

    Article  CAS  Google Scholar 

  29. T.J. Kang, J.-W. Yoon, D.-I. Kim, S.S. Kum, Y.-H. Huh, J.-H. Hahn, S.H. Moon, H.-Y. Lee, Y.H. Kim, Sandwich-type laminated nanocomposites developed by selective dip-coating of carbon nanotubes. Adv. Mater. 19(3), 427–432 (2007). https://doi.org/10.1002/adma.200600908

    Article  CAS  Google Scholar 

  30. A. Yelten, Production, and Characterisation of Bioceramic Composite Powder for Three Dimensional Printers, Ph.D. Thesis, Istanbul University, 2017.

  31. K. Delikanli, A. Calik, H.A. Uzun, Examination of boronizing properties of the plain carbon steel. J. Balıkesir Univ. Inst. Sci. Technol. 5(1), 99–110 (2003)

    Google Scholar 

  32. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Project Coordination Unit of Istanbul University-Cerrahpasa under Grant [number FYL-2019-29820].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Yelten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yelten, A., Kenar, Y., Mutlu, İ. et al. Production and electrochemical properties of the sol–gel α-Al2O3 coated stainless steel foams. Journal of Materials Research 38, 4385–4394 (2023). https://doi.org/10.1557/s43578-023-01150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01150-2

Keywords

Navigation