Skip to main content
Log in

Bimodal surface modification strategies towards improving the antibacterial activity of graphene oxide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we have demonstrated and compared bimodal strategies towards augmenting the antimicrobial activity of graphene oxide (GO). Among the two modifications viz. through alteration of GO surface functionalities and secondly through surface modification of GO with an ampicillin-based antibacterial ionic liquid (IL), the IL modification was most effective in enhancing the bactericidal effect. pH and the zeta potential values of the nanodispersions support the alteration of surface functionalities of GO by variation in reaction conditions and SEM, XRD, Raman spectra establish the resulting sheet thickness, morphology, stacking and planarity. The surface modification of GO with trihexyltetradecyl phosphonium ampicillin ([TTP][Amp]) IL as indicated by FTIR, SEM, pH and zeta potential measurements imply in nearly five times lower MBC value compared to average MBC value of the four GO variants. Hence, judicious IL modification can be an effective approach towards augmenting antibacterial property of GO for enduring antifouling coatings and membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1

Similar content being viewed by others

Data availability

All data generated and/or analysed during this study are included in this published article and its supplementary information file.

References

  1. H. Chang, H. Wu, Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 23, 1984–1997 (2013)

    Article  CAS  Google Scholar 

  2. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013)

    Article  CAS  Google Scholar 

  3. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011)

    Article  CAS  Google Scholar 

  4. J. Qiu, D. Wang, G. Hao, J. Guo, S. Qian, X. Liu, Adv. Mater. Interfaces 4, 1700228 (2017)

    Article  Google Scholar 

  5. F. Perreault, A.F. de Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015)

    Article  CAS  Google Scholar 

  6. V.T.H. Pham, V.K. Truong, M.D.J. Quinn, S.M. Notley, Y. Guo, V.A. Baulin, M. Al Kobaisi, R.J. Crawford, E.P. Ivanova, Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 9, 8458–8467 (2015)

    Article  CAS  Google Scholar 

  7. K. Krishnamoorthy, N. Umasuthan, R. Mohan, J. Lee, S.-J. Kim, Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater. 4, 1111–1117 (2012)

    Article  CAS  Google Scholar 

  8. S.S. Nanda, D.K. Yi, K. Kim, Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci. Rep. 6, 28443 (2016)

    Article  CAS  Google Scholar 

  9. J. Chen, G. Zhou, L. Chen, Y. Wang, X. Wang, S. Zeng, Interaction of graphene and its oxide with lipid membrane: a molecular dynamics simulation study. J. Phys. Chem. C 120, 6225–6231 (2016)

    Article  CAS  Google Scholar 

  10. S. Prusty, K. Pal, D. Bera, A. Paul, M. Mukherjee, F. Khan, A. Dey, S. Das, Enhanced antibacterial activity of a novel biocompatible triarylmethane based ionic liquid-graphene oxide nanocomposite. Colloids Surf. B 203, 111729–111739 (2021)

    Article  CAS  Google Scholar 

  11. X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138(7), 2064–2077 (2016)

    Article  CAS  Google Scholar 

  12. A.A. Menazea, M.K. Ahmed, Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J. Mol. Struct. 1218, 128536–128542 (2020)

    Article  CAS  Google Scholar 

  13. T. Arun, S.K. Verma, P.K. Panda, R.J. Joseyphus, E. Jha, A. Akbari-Fakhrabadi, P. Sengupta, D.K. Ray, V.S. Benitha, K. Jeyasubramanyan, P.V. Satyam, Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect. Mater. Sci. Eng. C 104, 109932–109945 (2019)

    Article  CAS  Google Scholar 

  14. L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)

    Article  CAS  Google Scholar 

  15. K. Dutta, R.S. Saraffin, B. Dutta, A. Datta, A. Kapuria, S. Ghosh, F. Khan, S. Das, S.K. Saha, Room temperature synthesis of GO/Ag2O nanocomposite: broad spectral ranged solar photocatalyst and high efficacy antibiotic for wastewater treatment. J. Environ. Chem. Eng 10, 107175 (2022)

    Article  CAS  Google Scholar 

  16. M.L. Bhaisare, Wu. Bo-Sgum, Wu. Mon-Chun, M. Shahnawaz Khan, M.-H. Tseng, Wu. Hui-Fen, MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures. Biomater. Sci. 4, 183–194 (2016)

    Article  CAS  Google Scholar 

  17. M.Y. Ashfaq, M.A. Al-Ghouti, N. Zouari, Investigating the effect of polymer-modified graphene oxide coating on RO membrane fouling. J. Water Process. Eng. 49, 103164 (2022)

    Article  Google Scholar 

  18. Z. Fan, K.H. Po, K.K. Wong, S. Chen, S.P. Lau, Nano Mater. 1(4), 1811–1818 (2018)

    CAS  Google Scholar 

  19. Y. Yuan, G. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions. Polym. Chem. 4, 2164–2167 (2013)

    Article  CAS  Google Scholar 

  20. N. Fatimaa, U. Qazib, A. Manshac, I. Bhattia, R. Javaidd, Q. Abbase, N. Nadeema, Z. Rehanf, S. Noreena, M. Zahid, Recent developments for antimicrobial applications of graphene-based polymeric composites: a review. J. Ind. Eng. Chem. 100, 40–58 (2021)

    Article  Google Scholar 

  21. X. Zhou, Y. Zhang, Z. Huang, D. Lu, A. Zhu, G. Shi, Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution. Sci. Rep. 6, 38417 (2016)

    Article  CAS  Google Scholar 

  22. X. Xiong, J. Wang, H. Jia, E. Fang, L. Ding, Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98(11), 2208–2214 (2013)

    Article  CAS  Google Scholar 

  23. S. Das, P.K.S. Magut, L. Zhao, F. Hasan, A.B. Karki, R. Jin, I.M. Warner, Multimodal theranostic nanomaterials derived from phthalocyanine-based organic salt. RSC Adv. 5, 30227–30233 (2015)

    Article  Google Scholar 

  24. N. Nikfarjam, M. Ghomi, T. Agarwal, M. Hassanpour, E. Sharifi, D. Khorsandi, M. Ali, F. Rossi, A. Rossetti, E. Nazarzadeh, N. Rabiee, D. Afshar, M. Vosough, T. Kumar, V. Mattoli, E. Lichtfouse, F.R. Tay, P. Makvandi, Antimicrobial ionic liquid-based materials for biomedical applications. Adv. Funct. Mater. 31, 2104148 (2021)

    Article  CAS  Google Scholar 

  25. S. Das, A. Paul, D. Bera, A. Dey, A. Roy, A. Dutta, D. Ganguly, Design, development and mechanistic insights into the enhanced antibacterial activity of mono and bis-phosphonium fluoresceinate ionic liquids. Mater. Today Commun. 28, 102672–102687 (2021)

    Article  CAS  Google Scholar 

  26. M. Markiewicz, J. Maszkowska, V.N. Rataj, S. Stolte, Readily biodegradable and low-toxic biocompatible ionic liquids for cellulose processing. RSC Adv. 6, 87325–87331 (2016)

    Article  CAS  Google Scholar 

  27. J. Blando, R. Porcja, B. Turpin, Issues in the quantitation of functional groups by FTIR spectroscopic analysis of impactor-collected aerosol samples. Aerosol Sci. Technol. 35(5), 899–908 (2001)

    Article  CAS  Google Scholar 

  28. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015)

    Article  CAS  Google Scholar 

  29. K.A. Shiyanova, M.V. Gudkov, M.K. Rabchinskii, L.A. Sokura, D.Y. Stolyarova, M.V. Baidakova, D.P. Shashkin, A.D. Trofimuk, D.A. Smirnov, I.A. Komarov, V.A. Timofeeva, V.P. Melnikov, Graphene oxide chemistry management via the use of KMnO4/K2Cr2O7 oxidizing agents. Nanomaterials 11, 915 (2021)

    Article  CAS  Google Scholar 

  30. K.-C. Hsu, D.-H. Chen, Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 9, 193–122 (2014)

    Article  Google Scholar 

  31. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  32. F. Mouhat, F.-X. Coudert, M.-L. Bocquet, Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566–1575 (2020)

    Article  CAS  Google Scholar 

  33. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010)

    Article  CAS  Google Scholar 

  34. R. Ferraz, L.C. Branco, I.M. Marrucho, J.M.M. Araújo, L.P.N. Rebelo, M.N. Ponte, C. Prudêncio, J.P. Noronha, Ž Petrovski, Development of novel ionic liquids based on ampicillin. Med. Chem. Commun. 3, 494–497 (2012)

    Article  CAS  Google Scholar 

  35. A. Olborska, A. Janas-Naze, L. Kaczmarek, T. Warga, D. Halin, Antibacterial effect of graphene and graphene oxide as a potential material for fiber finishes. Autex Res. J. 20(4), 506–516 (2020)

    Article  CAS  Google Scholar 

  36. S.B. Mohamed, T.A. Adlan, N.A. Khalafalla et al., Proteomics and docking study targeting penicillin-binding protein and penicillin-binding protein2a of methicillin-resistant staphylococcus aureus strain SO-1977 isolated from Sudan. Evolut. Bioinform. (2019). https://doi.org/10.1177/1176934319864945

    Article  Google Scholar 

  37. L.D. Mendelsohn, ChemDraw 8 ultra, windows and macintosh versions. J. Chem. Inf. Comput. Sci. 44, 2225–2226 (2004)

    Article  CAS  Google Scholar 

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, rev. A.02 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

Download references

Acknowledgments

S. Das acknowledges Amity University Kolkata for infrastructural support. K Dutta acknowledges the financial support from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India, through the TARE Scheme [No.TAR/2018/000420].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kajari Dutta or Susmita Das.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1384 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Prusty, S., Saha, P. et al. Bimodal surface modification strategies towards improving the antibacterial activity of graphene oxide. Journal of Materials Research 38, 4247–4260 (2023). https://doi.org/10.1557/s43578-023-01138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01138-y

Keywords

Navigation