Skip to main content
Log in

Experimental determination of (BCC + FCC) phase fields in the quaternary isotherm of Fe–Ni–Co–Cu at 950°C

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Quaternary isotherm of Fe–Ni–Co–Cu at 950 °C is determined by multiphase diffusion couple experiments, focused on establishing the (BCC + FCC) two-phase regions. The present findings, combined with our previous study, discover the presence of five separate two-phase fields in this isotherm namely (BCC + Cu-rich FCC), (BCC + Cu-lean FCC richer in Fe), (BCC + Cu-lean FCC richer in Co), (Cu-rich FCC + Fe-rich FCC), and (Cu-rich FCC + Co-rich FCC). This also indicates the existence of two three-phase fields. Based on diffusion couples exhibiting planar interfaces between BCC and FCC phases, three tie lines in (BCC + Cu-rich FCC) two-phase field were also determined. It is observed that Fe–Co–Cu ternary isotherm at 950 °C has a wider BCC region (up to 8 wt% Cu) than the commonly accepted phase diagram. A qualitative representation of the entire quaternary isotherm is proposed in the form of multiple iso-Ni concentration sections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. T. Kraft, Y.A. Chang, Predicting microstructure and microsegregation in multicomponent alloys. Jom 49(12), 20 (1997)

    Article  CAS  Google Scholar 

  2. Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W.A. Oates, Phase diagram calculation: past, present and future. Prog. Mater. Sci. 49(3–4), 313 (2004)

    Article  CAS  Google Scholar 

  3. R. Schmid-Fetzer, Phase diagrams: the beginning of wisdom. J. Phase Equilibria Diffus. 35(6), 735 (2014)

    Article  CAS  Google Scholar 

  4. J.C. Viala, N. Peillon, F. Bosselet, J. Bouix, Phase equilibria at 1000 °C in the Al–C–S–Ti quaternary system: an experimental approach. Mater. Sci. Eng. A 229, 95 (1996)

    Article  Google Scholar 

  5. L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, E.V. Lysova, Investigation of phase equilibria in alloys of the Al–Zn–Mg–Cu–Zr-Sc system. J. Alloys Compd. 367(1–2), 10 (2004)

    Article  CAS  Google Scholar 

  6. N.A. Belov, D.G. Eskin, N.N. Avxentieva, Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni-Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 53(17), 4709 (2005)

    Article  CAS  Google Scholar 

  7. S. Kobayashi, Y. Tsukamoto, T. Takasugi, Phase equilibria in the Co-rich Co-Al-W-Ti quaternary system. Intermetallics 19(12), 1908 (2011)

    Article  CAS  Google Scholar 

  8. M. Hoch, Calculation of ternary, quaternary, and higher-order phase diagrams from binary diagrams and binary thermodynamic data. J. Phase Equilibria. 14(6), 710 (1993)

    Article  CAS  Google Scholar 

  9. L.C. Li, F. Gesmundo, F. Viani, The construction of isothermal quaternary phase diagrams of the Na–M–O–S type for hot corrosion applications. Oxid. Met. 40(5–6), 395 (1993)

    Article  CAS  Google Scholar 

  10. E. Balitchev, T. Jantzen, I. Hurtado, D. Neuschütz, Thermodynamic assessment of the quaternary system Al–Fe–Mn–Si in the Al-rich corner. Calphad Comput. Coupling Phase Diagrams Thermochem. 27(3), 275 (2003)

    Article  CAS  Google Scholar 

  11. A. Kozlov, J. Gröbner, R. Schmid-Fetzer, Phase formation in Mg-Sn-Si and Mg–Sn–Si–Ca alloys. J. Alloys Compd. 509(7), 3326 (2011)

    Article  CAS  Google Scholar 

  12. C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design. Jom. 64(7), 839 (2012)

    Article  CAS  Google Scholar 

  13. Y.Q. Liu, W.T. Xu, D. Xie, Z.M. Li, Phase diagram calculations of Al-Cr-Nb-Ti quaternary system. Mater. Res. Innov. 18, S2573 (2014)

    Article  Google Scholar 

  14. U.R. Kattner, C.E. Campbell, Modelling of thermodynamics and diffusion in multicomponent systems. Mater. Sci. Technol. 25(4), 443 (2009)

    Article  CAS  Google Scholar 

  15. A. Kroupa, Modelling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Comput. Mater. Sci. 66, 3 (2013)

    Article  CAS  Google Scholar 

  16. A.B. Krishna, K.N. Kulkarni, Experimental determination of quaternary isotherm of Fe-Ni-Co-Cu at 950 °C by diffusion couple technique. Materialia 4, 549 (2018)

    Article  CAS  Google Scholar 

  17. D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys. Mater. Des. 116, 438 (2017)

    Article  CAS  Google Scholar 

  18. M. Myslyvchenko, M.O. Krapivka, S. Tereshchenko, I. Filep, Influence of Chromium on the phase composition and specific features of hardening of the MnFeCoNiCu high-entropy alloy. Mater. Sci. 56(3), 375 (2020)

    Article  CAS  Google Scholar 

  19. S. Das, S.K. Nishad, P.S. Robi, A New high-entropy alloy of Al–Fe–Co–Ni–Cu possessing single face-centered cubic crystal structure and excellent mechanical properties at room temperature. Phys. Status Solidi Appl. Mater. Sci. 218(8), 1 (2021)

    Google Scholar 

  20. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  21. W. Fang, R. Chang, X. Zhang, P. Ji, X. Wang, B. Liu, J. Li, X. He, X. Qu, F. Yin, Effects of Cobalt on the structure and mechanical behavior of non-equal molar CoxFe50−xCr25Ni25 high entropy alloys. Mater. Sci. Eng. A 723, 221 (2018)

    Article  CAS  Google Scholar 

  22. X. Sun, H. Zhu, J. Li, J. Huang, Z. Xie, High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers. Mater. Chem. Phys. 220, 449 (2018)

    Article  CAS  Google Scholar 

  23. H. Qiu, H. Zhu, J. Zhang, Z. Xie, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys. Mater. Sci. Eng. A 769, 138514 (2020)

    Article  CAS  Google Scholar 

  24. J.S. Kirkaldy, Diffusion in Multicomponent metallic systems: III. the motion of planar phase interfaces. Can. J. Phys. 36(7), 917 (1958)

    Article  CAS  Google Scholar 

  25. Alloy Phase Diagrams in ASM Handbook Volume 3, ASM International, Metals Park, OH, USA, (1992).

  26. J.E. Morral, Diffusion path theorems for ternary diffusion couples. Metall. Mater. Trans. A Phys. Metall. Mater. Sci 43(10), 3462 (2012)

    Article  CAS  Google Scholar 

  27. K.C. Hari Kumar, V. Raghavan, BCC-FCC equilibrium in ternary iron alloys—III. J. Alloy Phase Diagrams 5(3), 201–20 (1989)

    Google Scholar 

  28. S. Bein, C. Colinet, M. Durand-Charre, CVM calculation of the ternary system Co-Cu-Fe. J. Alloys Compd. 313(1–2), 133 (2000)

    Article  CAS  Google Scholar 

  29. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36(4), 881 (2005)

    Article  Google Scholar 

  30. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. (2015). https://doi.org/10.1038/ncomms6964

    Article  Google Scholar 

  31. X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, Y. Wu, Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Mater. Sci. Eng. A 713, 134 (2018)

    Article  CAS  Google Scholar 

  32. Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by Indian Space Research Organization through Space Technology Cell at IIT Kanpur is greatly acknowledged. The authors are thankful to Mr. Siva Kumar from Advanced Center for Materials Science, IIT Kanpur for facilitating the use of Electron Probe Micro-Analyzer.

Funding

Vikram Sarabhai Space Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samantaray, B., Kulkarni, K.N. Experimental determination of (BCC + FCC) phase fields in the quaternary isotherm of Fe–Ni–Co–Cu at 950°C. Journal of Materials Research 38, 4081–4092 (2023). https://doi.org/10.1557/s43578-023-01124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01124-4

Keywords

Navigation