Skip to main content

Advertisement

Log in

Exploring the dual functionality of Er2S3:Al2S3:NiS2 thin film as supercapacitor electrode and photocatalyst for efficient energy storage and pollutant degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study focuses on Er2S3:Al2S3:NiS2 thin films using diethyldithiocarbamate. The thin films exhibited a crystallite size of 37 nm, with geometrically shaped, small clustered bodies. XPS analysis confirmed the presence of core level peaks corresponding to Er4d, Al2p, Ni2p, and S2p in the material and band gap energy of 2.7 eV. Electrochemical testing using cyclic voltammetry revealed excellent performance with specific capacitance of 879 Fg−1. The thin films also exhibited satisfactory cycle stability, indicating their potential as energy storage media. Additionally, the photocatalytic activity of the material was evaluated for the degradation of various pollutants including malachite green dye, pesticide fluopyram, and phenol with 70% degradation against fluopyram with 2.03 × 10–2 min−1 rate constant. Successive cycles also presented an impressive degradation by the thin films. These findings highlight the promising potential of ternary metal sulphide thin films for diverse technological applications such as energy storage and photocatalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. O.M. Ikumapayi, E.T. Akinlabi, A.O.M. Adeoye, S.O. Fatoba, Mat. Today Proc. 44, 1154 (2021). https://doi.org/10.1016/j.matpr.2020.11.233

    Article  Google Scholar 

  2. M.M. Gul, K.S. Ahmad, Int. J. Energy Res. 46, 18697 (2022). https://doi.org/10.1002/er.8489

    Article  CAS  Google Scholar 

  3. M.M. Gul, K.S. Ahmad, J. Mater. Sci. 57, 7290 (2022). https://doi.org/10.1007/s10853-022-07131-w

    Article  CAS  Google Scholar 

  4. P. Priyadarshini, S. Das, R. Naik, RSC Adv. 12, 9599 (2022). https://doi.org/10.1039/D2RA00771A

    Article  CAS  Google Scholar 

  5. L. Wu, J.P. Hofmann, Curr. Op. Electrochem. (2022). https://doi.org/10.1016/j.coelec.2022.101010

    Article  Google Scholar 

  6. M. Irfan, S. Azam, A. Dahshan, I. El Bakkali, K. Nouneh, Comp. Cond. Mat. 30, e00625 (2022). https://doi.org/10.1016/j.cocom.2021.e00625

    Article  Google Scholar 

  7. W. Khan, H.U. Din, S. Azam, R. Neffati, J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2022.123199

    Article  Google Scholar 

  8. M.M. Abouelela, G. Kawamura, A. Matsuda, J. Energy Chem. (2022). https://doi.org/10.1016/j.jechem.2022.05.022

    Article  Google Scholar 

  9. B. Saparov, Chem. Rev. 122, 10575 (2022). https://doi.org/10.1021/acs.chemrev.2c00346

    Article  CAS  Google Scholar 

  10. S.S. Hegde, B.J. Fernandes, V. Talapatadur, K.P. Ramesh, K. Ramesh, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.966

    Article  Google Scholar 

  11. A.A. Tedstone, A. Bin Jumah, E. Asuquo, A.A. Garforth, R. Soc. Open Sci. 9, 211353 (2022). https://doi.org/10.1098/rsos.211353

    Article  CAS  Google Scholar 

  12. J.C. Sarker, G. Hogarth, Chem. Rev. 121, 6057 (2021). https://doi.org/10.1021/acs.chemrev.0c01183

    Article  CAS  Google Scholar 

  13. G. Hogarth, D.C. Onwudiwe, Inorganic. 9, 70 (2021). https://doi.org/10.3390/inorganics9090070

    Article  CAS  Google Scholar 

  14. J.L. Holechek, H.M. Geli, M.N. Sawalhah, R. Valdez, Sustainability. 14, 4792 (2022). https://doi.org/10.3390/su14084792

    Article  Google Scholar 

  15. Y. Zhang, I. Khan, M.W. Zafar, Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-22005-z

    Article  Google Scholar 

  16. A. Rehman, H. Ma, I. Ozturk, M. Radulescu, Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-19317-5

    Article  Google Scholar 

  17. S.A. Ali, T. Ahmad, Int. J. Hydrogen Ener. (2022). https://doi.org/10.1016/j.ijhydene.2022.06.269

    Article  Google Scholar 

  18. M.M. Gul, K.S. Ahmad, Int. J. Energy Res. 46, 9371 (2022). https://doi.org/10.1002/er.7811

    Article  CAS  Google Scholar 

  19. Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Coord. Chem. Rev. 451, 214265 (2022). https://doi.org/10.1016/j.ccr.2021.214265

    Article  CAS  Google Scholar 

  20. S.K. Sukhmani, S.D. Raut, T. Siddiqui, S.F. Shaikh, N.M. Shinde, R.S. Mane, Mater. Res. Bull. 156, 111975 (2022). https://doi.org/10.1016/j.materresbull.2022.111975

    Article  CAS  Google Scholar 

  21. M. Ahmad, I. Hussain, T. Nawaz, Y. Li, X. Chen, S. Ali, M. Imran, X. Ma, K. Zhang, J. Power Sourc. 534, 231414 (2022). https://doi.org/10.1016/j.jpowsour.2022.231414

    Article  CAS  Google Scholar 

  22. A. Bahaa, M.A. Abdelkareem, A.Y. Mohamed, P.A. Shinde, B.A. Yousef, E.T. Sayed, H. Alawadhi, K.J. Chae, S. Al-Asheh, A.G. Olabi, J. Coll. Inter. Sci. 608, 711 (2022). https://doi.org/10.1016/j.jcis.2021.09.136

    Article  CAS  Google Scholar 

  23. L. Zhang, X. Li, M. Yang, W. Chen, Energy Stor. Mater. 41, 522 (2021). https://doi.org/10.1016/j.ensm.2021.06.033

    Article  Google Scholar 

  24. G. Pérez-Lucas, A. El Aatik, M. Aliste, V. Hernández, J. Fenoll, S. Navarro, Chem. Eng. J. 448, 137616 (2022). https://doi.org/10.1016/j.cej.2022.137616

    Article  CAS  Google Scholar 

  25. N. Kumar, S. Verma, J. Park, V.C. Srivastava, M. Naushad, Chemosphere 298, 134281 (2022). https://doi.org/10.1016/j.chemosphere.2022.134281

    Article  CAS  Google Scholar 

  26. A. Saka, L.T. Jule, S. Soressa, L. Gudata, N. Nagaprasad, V. Seenivasan, K. Ramaswamy, Sci. Rep. 12, 1 (2022). https://doi.org/10.1038/s41598-022-14828-0

    Article  CAS  Google Scholar 

  27. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, Chin. J. Cat. 43, 2652 (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  CAS  Google Scholar 

  28. C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, Appl. Surf. Sci. 610, 155346 (2023). https://doi.org/10.1016/j.apsusc.2022.155346

    Article  CAS  Google Scholar 

  29. M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Sep. Pur. Technol. 304, 122401 (2023). https://doi.org/10.1016/j.seppur.2022.122401

    Article  CAS  Google Scholar 

  30. M. Cai, C. Wang, Y. Liu, R. Yan, S. Li, Sep. Pur. Technol. 300, 121892 (2022). https://doi.org/10.1016/j.seppur.2022.121892

    Article  CAS  Google Scholar 

  31. S. Li, C. Wang, Y. Liu, M. Cai, W. Zhao, X. Duan, Chem. Eng. J. 455, 140943 (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  CAS  Google Scholar 

  32. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Adv. Powd. Mater. 2, 100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  33. S. Li, M. Cai, C. Wang, Y. Liu, Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  Google Scholar 

  34. S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Chem. Eng. J. 428, 131158 (2022). https://doi.org/10.1016/j.cej.2021.131158

    Article  CAS  Google Scholar 

  35. S. Li, J. Chen, S. Hu, H. Wang, W. Jiang, X. Chen, Chem. Eng. J. 402, 126165 (2020). https://doi.org/10.1016/j.cej.2020.126165

    Article  CAS  Google Scholar 

  36. T. Xie, T.E.J. Edwards, N.M. Della Ventura, D. Casari, E. Huszár, L. Fu, L. Zhou, X. Maeder, J.J. Schwiedrzik, I. Utke, J. Michler, Thin Solid Film. 711, 138287 (2020). https://doi.org/10.1016/j.tsf.2020.138287

    Article  CAS  Google Scholar 

  37. S. Shahidi, B. Moazzenchi, M. Ghoranneviss, Eur. Phys. J. Appl. Phys. 71, 31302 (2015). https://doi.org/10.1051/epjap/2015140439

    Article  CAS  Google Scholar 

  38. R. Constantin, B. Miremad, Surf. Coat. Technol. 120, 728 (1999). https://doi.org/10.1016/S0257-8972(99)00366-7

    Article  Google Scholar 

  39. R. Swartwout, M.T. Hoerantner, V. Bulović, Ener. Environ. Mater. 2, 119 (2019). https://doi.org/10.1002/eem2.12043

    Article  CAS  Google Scholar 

  40. P. Maryanchuk, I. Koziarskyi, Inorg. Mater. (2012). https://doi.org/10.1134/s0020168512070096

    Article  Google Scholar 

  41. Y. Shim, K. Hasegawa, K. Wakita, N. Mamedov, N. Yamamoto, Phys. Stat. Solidi C 6(5), 1089 (2009). https://doi.org/10.1002/pssc.200881235

    Article  CAS  Google Scholar 

  42. G. Velu Kaliyannan, S.V. Palanisamy, R. Rathanasamy, M. Palanisamy, N. Nagarajan, S. Sivaraj, M.S. Anbupalani, J. Electron. Mater. 49, 5937 (2020). https://doi.org/10.1007/s11664-020-08361-x

    Article  CAS  Google Scholar 

  43. M.L. Liu, I.W. Chen, F.Q. Huang, L.D. Chen, Adv. Mater. 21, 3808 (2009). https://doi.org/10.1002/adma.200900409

    Article  CAS  Google Scholar 

  44. A. Molla, M. Sahu, S. Hussain, Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep26034

    Article  CAS  Google Scholar 

  45. F. Torki, H. Faghihian, RSC Adv. 7, 54651 (2017). https://doi.org/10.1039/C7RA09461B

    Article  CAS  Google Scholar 

  46. S. Sohrabnezhad, A. Pourahmad, M.S. Sadjadi, M.A. Zanjanchi, Mater. Sci. Eng. C 28, 202 (2008). https://doi.org/10.1016/j.msec.2006.12.001

    Article  CAS  Google Scholar 

  47. R. Bhardwaj, R. Jha, M. Bhushan, Mater. Sci. Semicond. Proc. 130, 105827 (2021). https://doi.org/10.1016/j.mssp.2021.105827

    Article  CAS  Google Scholar 

  48. C. Karthikeyan, R. Dhilip Kumar, J. Anandha Raj, S. Karuppuchamy, Ener. Environ. 31, 1367 (2020). https://doi.org/10.1177/0958305X19899373

    Article  CAS  Google Scholar 

  49. N. Kumar, H. Mittal, V. Parashar, S.S. Ray, J.C. Ngila, RSC Adv. 6, 21929 (2016). https://doi.org/10.1039/C5RA24299A

    Article  CAS  Google Scholar 

  50. T.T. Ghogare, V.C. Lokhande, T. Ji, U.M. Patil, C.D. Lokhande, Surf. Inter. 19, 100507 (2020). https://doi.org/10.1016/j.surfin.2020.100507

    Article  CAS  Google Scholar 

  51. L. Chen, M. Hosseini, A. Fakhri, N. Fazelian, S.M. Nasr, N. Nobakht, J. Mater. Sci. Mater. Electron. 30, 13067 (2019). https://doi.org/10.1007/s10854-019-01668-4

    Article  CAS  Google Scholar 

  52. A. Gahtar, S. Benramache, C. Zaouche, A. Boukacham, A. Sayah, Adv. Mater. Sci. 20, 36 (2020). https://doi.org/10.2478/adms-2020-0015

    Article  CAS  Google Scholar 

  53. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Superlatt. Microstruct. 63, 248 (2013). https://doi.org/10.1016/j.spmi.2013.08.023

    Article  CAS  Google Scholar 

  54. O.O. Balayeva, A.A. Azizov, M.B. Muradov, A.M. Maharramov, G.M. Eyvazova, R.M. Alosmanov, Z.Q. Mamiyev, Z.A. Aghamaliyev, Mater. Res. Bull. 75, 155 (2016). https://doi.org/10.1016/j.materresbull.2015.11.037

    Article  CAS  Google Scholar 

  55. I. Akin, E. Aslan, I. Hatay Patir, Eur. J. Inorg. Chem. 2017, 3961 (2017). https://doi.org/10.1002/ejic.201700873

    Article  CAS  Google Scholar 

  56. B. Vafapoor, D. Fathi, M. Eskandari, J. Electron. Mater. 47, 1932 (2018)

    Article  CAS  Google Scholar 

  57. H. Huang, Y. Zhao, Y. Bai, F. Li, Y. Zhang, Y. Chen, Adv. Sci. 7, 2000012 (2020). https://doi.org/10.1002/advs.202000012

    Article  CAS  Google Scholar 

  58. L.Å. Näslund, P.O. Persson, J. Rosén, J. Phys. Chem. C 124, 27732 (2020). https://doi.org/10.1021/acs.jpcc.0c07413

    Article  CAS  Google Scholar 

  59. P. Panda, N.G. Krishna, P. Rajput, R. Ramaseshan, Phys. Chem. Chem. Phys. 20, 29817 (2018). https://doi.org/10.1039/C8CP06089D

    Article  CAS  Google Scholar 

  60. C. Lian, K. Liu, H. Liu, J. Wu, J. Phys. Chem. C 121, 14066 (2017). https://doi.org/10.1021/acs.jpcc.7b04869

    Article  CAS  Google Scholar 

  61. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, Adv. Ener. Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043

    Article  CAS  Google Scholar 

  62. M.M. Gul, K.S. Ahmad, Biosens. Bioelectron. 142, 111576 (2019). https://doi.org/10.1016/j.bios.2019.111576

    Article  CAS  Google Scholar 

  63. N.A. Khan, I. Ahmad, N. Rashid, M.N. Zafar, F.K. Shehzad, A. Ul-Hamid, M.F. Nazar, M. Junaid, M. Faheem, S.S. Shafqat, U. Jabeen, Int. J. Hyd. Ener. 47, 30970 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.124

    Article  CAS  Google Scholar 

  64. M.A. Pandit, D.S.H. Kumar, M. Ramadoss, Y. Chen, K. Muralidharan, RSC Adv. 12, 7762 (2022). https://doi.org/10.1039/D2RA00447J

    Article  CAS  Google Scholar 

  65. M.A. Ehsan, Z. Ullah, M.F. Nazar, M. Younas, M. Suliman, Int. J. Hyd. Ener. 48, 15784 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.083

    Article  CAS  Google Scholar 

  66. N.A. Khan, I. Ahmad, N. Rashid, S. Hussain, R. Zairov, M. Alsaiari, A.S. Alkorbi, Z. Ullah, M.F. Nazar, Int. J. Hyd. Ener. (2023). https://doi.org/10.1016/j.ijhydene.2023.04.308

    Article  Google Scholar 

  67. I. Ahmad, J. Ahmed, S. Batool, M.N. Zafar, A. Hanif, M.F. Nazar, A. Ul-Hamid, U. Jabeen, A. Dahshan, M. Idrees, S.A. Shehzadi, J. Alloy. Comp. 894, 162409 (2022). https://doi.org/10.1016/j.jallcom.2021.162409

    Article  CAS  Google Scholar 

  68. N.A. Khan, N. Rashid, I. Ahmad, R. Zairov, H. Ur Rehman, M.F. Nazar, U. Jabeen, Int. J. Hyd. Ener. 47, 22340 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.045

    Article  CAS  Google Scholar 

  69. M.A. Ehsan, A. Khan, M.N. Zafar, U.A. Akber, A.S. Hakeem, M.F. Nazar, Int. J. Hyd. Ener. 47, 42001 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.231

    Article  CAS  Google Scholar 

  70. M. Batool, M.F. Nazar, A. Awan, M.B. Tahir, A. Rahdar, A.E. Shalan, S. Lanceros-Méndez, M.N. Zafar, Nano-Struct. Nano-Obj. 27, 100762 (2021). https://doi.org/10.1016/j.nanoso.2021.100762

    Article  CAS  Google Scholar 

  71. M.B. Tahir, M. Rafique, M. Isa Khan, A. Majid, F. Nazar, M. Sagir, S. Gilani, M. Farooq, A. Ahmed, Int. J. Ener. Res. 42, 4667 (2018). https://doi.org/10.1002/er.4208

    Article  CAS  Google Scholar 

  72. A.M. Khan, A. Mehmood, M. Sayed, M.F. Nazar, B. Ismail, R.A. Khan, H. Ullah, H.M.A. Rehman, A.Y. Khan, A.R. Khan, J. Mol. Liq. 236, 395 (2017). https://doi.org/10.1016/j.molliq.2017.04.063

    Article  CAS  Google Scholar 

  73. S. Haider, S.U. Khan, J. Najeeb, S. Naeem, H. Rafique, H. Munir, W.A. Al-Masry, M.F. Nazar, J. Clean. Prod. 365, 132822 (2022). https://doi.org/10.1016/j.jclepro.2022.13282

    Article  CAS  Google Scholar 

  74. S. Majid, K.S. Ahmad, Optik 187, 152–163 (2019). https://doi.org/10.1016/j.ijleo.2019.05.025

    Article  CAS  Google Scholar 

  75. S. Sharif, K.S. Ahmad, Optik 218, 165014 (2020). https://doi.org/10.1016/j.ijleo.2020.165014

    Article  CAS  Google Scholar 

  76. J. Anwar, K.S. Ahmad, S.B. Jaffri, M. Sohail, Can. Metall. Quar. 61, 145 (2022). https://doi.org/10.1080/00084433.2022.2034710

    Article  CAS  Google Scholar 

  77. M.H. Habibi, J. Parhizkar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 879 (2015). https://doi.org/10.1016/j.saa.2015.06.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to the Department of Environmental Sciences, Fatima Jinnah Women University, Pakistan for providing the technical and financial facilities needed for completion of this work. Authors also acknowledge the Higher Education Commission of Pakistan and Photon Science Institute, The University of Manchester, UK. The authors highly acknowledge Xuzhao Liu, PhD student, The University of Manchester, UK, for his tremendous help and assistance during the research. The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2023-517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, M.M., Ahmad, K.S., Alharbi, Y.T. et al. Exploring the dual functionality of Er2S3:Al2S3:NiS2 thin film as supercapacitor electrode and photocatalyst for efficient energy storage and pollutant degradation. Journal of Materials Research 38, 3995–4008 (2023). https://doi.org/10.1557/s43578-023-01117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01117-3

Keywords

Navigation