Skip to main content
Log in

Tuning the electronic properties in facile in-situ solution synthesis of SnSe2/rGO nanocomposites with enhanced thermoelectric performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the potential of an SnSe2–rGO composite as a thermoelectric (TE) material and the effect of reduced graphene oxide (rGO) concentration on its TE properties. SnSe2–rGO composites were synthesized via a solvothermal route followed by sintering at 823 K in the presence of argon. The in-situ doping of rGO within the SnSe2 matrix was successfully achieved. The resultant composite showed a significant improvement in electrical conductivity, which displayed a peak value of 2479 S/m (pure SnSe2 = 750 S/m) at 300 K. This enhancement is due to the presence of rGO conductive sheets, which increased the carrier concentration of the overall structure. The investigation confirms that increasing the rGO concentration can improve the thermoelectric properties of bulk SnSe2, where the peak ZT of 0.18 at 750 K was achieved when 11.7% of rGO was added to the SnSe2 matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to the restriction imposed by the funder agency and are available from the corresponding author upon reasonable request.

References

  1. B.S. Finn, Thomson’s dilemma. Phys. Today 20, 54–59 (1967)

    Article  Google Scholar 

  2. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009). https://doi.org/10.1039/b822664b

    Article  CAS  Google Scholar 

  3. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  CAS  Google Scholar 

  4. Mahan, G.D. Introduction to thermoelectrics. APL Mater. 2016, 4, 104806. https://doi.org/10.1063/1.4954055.

  5. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011). https://doi.org/10.1021/ja111199y

    Article  CAS  Google Scholar 

  6. Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011

    Article  Google Scholar 

  7. M. Wolf, R. Hinterding, A. Feldhoff, High power factor vs high zT—A review of thermoelectric materials for high-temperature application. Entropy 21, 1058 (2019). https://doi.org/10.3390/e21111058

    Article  CAS  Google Scholar 

  8. J. Li, J. Shen, Z. Ma, K. Wu, J. Li, J. Shen, Z. Ma, K. Wu, Thickness-controlled electronic structure and thermoelectric performance of ultrathin SnS2 nanosheets. Sci. Rep. 7, 8914 (2017). https://doi.org/10.1038/s41598-017-09572-9

    Article  CAS  Google Scholar 

  9. Q. Fan, J. Yang, J. Cao, C. Liu, Thermoelectric performances for both p- and n-type GeSe. R. Soc. Open Sci. 8, 201980 (2021). https://doi.org/10.1098/rsos.201980

    Article  CAS  Google Scholar 

  10. Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M.C. Spadaro, C. Xie, O. Cojocaru-Mirédin, J. Arbiol, M. Ibáñez, Defect engineering in solution-processed polycrystalline SnSe leads to high thermoelectric performance. ACS Nano 16(1), 78–88 (2021). https://doi.org/10.1021/acsnano.1c06720

    Article  CAS  Google Scholar 

  11. Y. Liu, M. Calcabrini, Y. Yu, A. Genç, C.Y. Chang, T. Costanzo, T. Kleinhanns, S. Lee, J. Llorca, O. Cojocaru-Mirédin, M. Ibáñez, The importance of surface adsorbates in solution-processed thermoelectric materials: the case of SnSe. Adv. Mater. 33(52), 2106858–2106858 (2021). https://doi.org/10.1002/adma.202106858

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Liu, C.-C. Xing, T. Zhang, M. Li, P. Mercè, X. Yu, J. Llorca, J. Llorca, D. Cadavid, M. Ibáñez, A. Cabot, Tin selenide molecular precursor for the solution processing of thermoelectric materials and devices. ACS—Appl. Mater. Interfaces 12(24), 27104–27111 (2020). https://doi.org/10.1021/acsami.0c04331

    Article  CAS  Google Scholar 

  13. D.I. Bletskan, Crystalline and Glassy Chalcogenides of Si, Ge, Sn and Alloys Based on Them (Zakarpattia, Uzhhorod, 2004)

    Google Scholar 

  14. B. Palosz, S. Gierlotka, F. Levy, Polytypism of SnSe2 crystals grown by chemical transport: structures of six large-period pol-ytypes of SnSe2. Acta Cryst. C 41, 1404–1406 (1985)

    Article  Google Scholar 

  15. B. Palosz, E. Salje, Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Crystallogr. 22, 622–623 (1989)

    Article  CAS  Google Scholar 

  16. D. Bletskan, Electronic structure of 2H-SnSe2: Ab initio modeling and comparison with experiment. Semicond. Phys. Quantum Electron. Optoelectron. 19, 98–108 (2016). https://doi.org/10.15407/spqeo19.01.098

    Article  CAS  Google Scholar 

  17. I.S. Protsak, S. Champet, C.-Y. Chiang, W. Zhou, S.R. Popuri, J.-W. Bos, D.K. Misra, Y.M. Morozov, D.H. Gregory, Toward new thermoelectrics: tin selenide/modified graphene oxide nanocomposites. ACS Omega 4, 6010–6019 (2019). https://doi.org/10.1021/acsomega.8b03146

    Article  CAS  Google Scholar 

  18. A.I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). https://doi.org/10.1038/nature06381

    Article  CAS  Google Scholar 

  19. L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993). https://doi.org/10.1103/physrevb.47.16631

    Article  CAS  Google Scholar 

  20. Y. Zhang, Y. Liu, K.H. Lim, C.-C. Xing, M. Li, T. Zhang, P. Tang, J. Llorca, J. Llorca, K.M. Ng, M. Ibáñez, P. Guardia, M. Prato, D. Cadavid, A. Cabot, Tin diselenide molecular precursor for solution-processable thermoelectric materials. Angew. Chem. 130(52), 17309–17314 (2018). https://doi.org/10.1002/ange.201809847

    Article  Google Scholar 

  21. G. Li, G. Ding, G. Gao, Thermoelectric properties of SnSe2 monolayer. J. Phys. Condens. Matter 29, 015001 (2017). https://doi.org/10.1088/0953-8984/29/1/015001

    Article  CAS  Google Scholar 

  22. A.-T. Pham, T.H. Vu, C. Cheng, T.L. Trinh, J.-E. Lee, H. Ryu, C. Hwang, S.-K. Mo, J. Kim, L.-D. Zhao et al., High-quality SnSe2 single crystals: electronic and thermoelectric properties. ACS Appl. Energy Mater. 3, 10787–10792 (2020). https://doi.org/10.1021/acsaem.0c01846

    Article  CAS  Google Scholar 

  23. Y. Ding, B. Xiao, G. Tang, J. Hong, Transport properties and high thermopower of SnSe2: A Full Ab-initio investigation. J. Phys. Chem. C 121, 225–236 (2017). https://doi.org/10.1021/acs.jpcc.6b11467

    Article  CAS  Google Scholar 

  24. P. Xu, T. Fu, J. Xin, Y. Liu, P. Ying, X. Zhao, H. Pan, T. Zhu, Anisotropic thermoelectric properties of layered compound SnSe 2. Sci. Bull. 62, 1663–1668 (2017). https://doi.org/10.1016/j.scib.2017.11.015

    Article  CAS  Google Scholar 

  25. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin, B. Zhou, A. Jain et al., Promising thermoelectric performance in van der Waals layered SnSe2. Mater. Today Phys. 3, 127–136 (2017). https://doi.org/10.1016/j.mtphys.2017.10.001

    Article  Google Scholar 

  26. M. Schrade, H. Fjeld, T. Norby, T.G. Finstad, Versatile apparatus for thermoelectric characterization of oxides at high temperatures. Rev. Sci. Instrum. 85, 103906 (2014). https://doi.org/10.1063/1.4897489

    Article  CAS  Google Scholar 

  27. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  28. L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid et al., Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141 (2016)

    Article  CAS  Google Scholar 

  29. D. Ibrahim, J.-B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Semprimoschnig, A. Dauscher, B. Lenoir, Reinvestigation of the thermal properties of single-crystalline SnSe. Appl. Phys. Lett. 110, 032103 (2017). https://doi.org/10.1063/1.4974348

    Article  CAS  Google Scholar 

  30. Z.M. Gibbs, A. LaLonde, G.J. Snyder, Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. N. J. Phys. 15, 075020 (2013). https://doi.org/10.1088/1367-2630/15/7/075020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Higher Education Commission Islamabad Pakistan, under the National Research Program for Universities (NRPU) Grant (No. 20-15691/NRPU/R&D/HEC/2021, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Siyar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Siyar, M., Park, C. et al. Tuning the electronic properties in facile in-situ solution synthesis of SnSe2/rGO nanocomposites with enhanced thermoelectric performance. Journal of Materials Research 38, 3913–3922 (2023). https://doi.org/10.1557/s43578-023-01112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01112-8

Keywords

Navigation