Skip to main content
Log in

Data-driven study of dilute aluminum alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of new high-tech aluminum alloys is an important and actual task. Modern theoretical methods make it possible to obtain data on the material’s properties, allowing to determine the search area for optimal alloying elements or their combinations for specific applications. Using the PAW method, we systematically studied the properties of binary dilute aluminum alloys with 58 alloying components with an impurity concentration of 1 at.%. For each alloy, lattice parameter a, bulk modulus B, elastic constants C11, C12, C44, Young's modulus E, and shear modulus G were calculated. Ductility characteristics were analyzed using the G/B ratio and the Cauchy pressure PC. Good agreement between the obtained results and experimental data is shown. The influence of alloying components on the mechanical properties of alloys has been evaluated. For a deeper understanding of the discovered dependencies, charge density change analysis of aluminum alloys was carried out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The dataset analyzed during the current study are available at https://github.com/MMDLab/data-driven-study-of-dilute-Al-alloys.

References

  1. O.S.I. Fayomi, A.P.I. Popoola, N.E. Udoye, Effect of alloying element on the integrity and functionality of aluminium-based alloy, in aluminium alloys—recent trends in processing, characterization, mechanical behavior and applications, in Aluminium alloys—recent trends in processing characterization mechanical behavior and applications. ed. by S. Sivasankaran (InTech, London, 2017)

    Google Scholar 

  2. T. Kimura, T. Nakamoto, T. Ozaki, T. Miki, I. Murakami, Y. Hashizume, A. Tanaka, Microstructural development and aging behavior of Al–Cr–Zr heat-resistant alloy fabricated using laser powder bed fusion. J. Market. Res. 15, 4193 (2021)

    CAS  Google Scholar 

  3. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32, 131 (1996)

    Article  Google Scholar 

  4. P. Rambabu, N. Eswara Prasad, V.V. Kutumbarao, R.J.H. Wanhill, Aluminium alloys for aerospace applications, in Aerospace materials and material technologies. ed. by N. Prasad, R. Wanhill (Indian Institute of Metals Series, Springer, Singapore, 2017)

    Google Scholar 

  5. P.A. Korzhavyi, A.V. Ruban, S.I. Simak, Y.K. Vekilov, Electronic structure, thermal, and elastic properties of al-li random alloys. Phys. Rev. B 49, 14229 (1994)

    Article  CAS  Google Scholar 

  6. A. Taga, L. Vitos, B. Johansson, G. Grimvall, Ab initio calculation of the elastic properties of Al1−xLix (x ≤ 0.20) random alloys. Phys. Rev. B Condens. Matter Mater. Phys. 71, 14201 (2005)

    Article  Google Scholar 

  7. J. Zander, R. Sandström, L. Vitos, Modelling mechanical properties for non-hardenable aluminium alloys. Comput. Mater. Sci. 41, 86 (2007)

    Article  CAS  Google Scholar 

  8. T. Uesugi, K. Higashi, First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys. Comput. Mater. Sci. 67, 1 (2013)

    Article  CAS  Google Scholar 

  9. C.J. Hung, S.K. Nayak, Y. Sun, C. Fennessy, V.K. Vedula, S. Tulyani, S.-W. Lee, S.P. Alpay, R.J. Hebert, Novel Al-X alloys with improved hardness. Mater. Des. 192, 108699 (2020)

    Article  CAS  Google Scholar 

  10. D. Ma, M. Friák, J. von Pezold, J. Neugebauer, D. Raabe, Ab initio study of compositional trends in solid solution strengthening in metals with low peierls stresses. Acta Mater. 98, 367 (2015)

    Article  CAS  Google Scholar 

  11. A. Alam, D.D. Johnson, Structural properties and relative stability of (meta)stable ordered partially ordered, and disordered Al-Li alloy phases. Phys. Rev. B 85, 144202 (2012)

    Article  Google Scholar 

  12. M. Sluiter, D. de Fontaine, X.Q. Guo, R. Podloucky, A.J. Freeman, First-principles calculation of phase equilibria in the aluminum lithium system. Phys. Rev. B 42, 10460 (1990)

    Article  CAS  Google Scholar 

  13. M.H.F. Sluiter, Y. Watanabe, D. de Fontaine, Y. Kawazoe, First-principles calculation of the pressure dependence of phase equilibria in the Al-Li system. Phys. Rev. B 53, 6137 (1996)

    Article  CAS  Google Scholar 

  14. A.C.P. Jain, D. Marchand, A. Glensk, M. Ceriotti, W.A. Curtin, Machine learning for metallurgy III: a neural network potential for Al–Mg–Si. Phys. Rev. Mater. 5, 053805 (2021)

    Article  CAS  Google Scholar 

  15. D. Marchand, W.A. Curtin, Machine learning for metallurgy IV: a neural network potential for Al–Cu–Mg and Al–Cu–Mg–Zn. Phys. Rev. Mater. 6, 053803 (2022)

    Article  CAS  Google Scholar 

  16. S.H. Kellington, D. Loveridge, J.M. Titman, The lattice parameters of some alloys of lithium. J. Phys. D Appl. Phys. 2, 1162 (1969)

    Article  Google Scholar 

  17. E.A. Starke, T.H. Sanders, I.G. Palmer, New approaches to alloy development in the Al-Li system. JOM: J. Miner. Metals Mater. Soc. 33, 24 (1981)

    Article  CAS  Google Scholar 

  18. E.D. Levine, E.J. Rapperport, The aluminum-lithium system between aluminum and Al-Li. Trans. Am. Inst. Min. Metall. Pet. Eng. 227, 1204 (1963)

    CAS  Google Scholar 

  19. A.J. McAlister, Bull. Alloy Phase Diagr. 3, 172 (1982)

    Article  Google Scholar 

  20. H.J. Axon, W. Hume-Rothery, The lattice spacings of solid solutions of different elements in aluminium. Proc. R Soc. Lond. A Math. Phys. Sci. 193, 1 (1948)

    CAS  Google Scholar 

  21. W. Müller, E. Bubeck, and V. Gerold, Aluminium-Lithium Alloys. In: C. Baker et al. (Eds) (London Institute of Metals, London, 1986)

  22. G. Boeck, A.J. Rocke, Lothar Meyer: Modern theories and pathways to periodicity, 1st edn. (Springer International Publishing, Cham, 2022)

    Book  Google Scholar 

  23. R.M. Martin, Electronic structure (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  24. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated electronic properties of metals (Elsevier, Amsterdam, 1978)

    Google Scholar 

  25. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  26. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)

    Article  CAS  Google Scholar 

  27. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H.-E. Ekström, Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 37, 1999–2006 (2006)

    Article  Google Scholar 

  28. M.C. McConnell, P.G. Partridge, The effect of microstructure and composition on the properties of vapour quenched Al-Cr alloys—I Young’s modulus. Acta Metallurgica 35, 1973 (1987)

    Article  CAS  Google Scholar 

  29. A.F. Wells, Structural inorganic chemistry, 5th edn. (Oxford University Press, Oxford, 1984)

    Google Scholar 

  30. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  31. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  32. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  CAS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Efficiency of Ab-Initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  35. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947)

    Article  CAS  Google Scholar 

  36. N.V. Skripnyak, A.V. Ponomareva, M.P. Belov, I.A. Abrikosov, Ab initio calculations of elastic properties of alloys with mechanical instability: application to BCC Ti-V alloys. Mater. Des. 140, 357 (2018)

    Article  CAS  Google Scholar 

  37. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  38. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  Google Scholar 

  39. G. Grimvall, Thermophysical properties of materials (Elsevier, Amsterdam, 1999)

    Google Scholar 

  40. E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, Improved grid-based algorithm for bader charge allocation. J. Comput. Chem. 28, 899 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Science Foundation (Project No. 22-12-00193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ponomareva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.A., Karavaev, K.V. & Ponomareva, A.V. Data-driven study of dilute aluminum alloys. Journal of Materials Research 38, 3850–3860 (2023). https://doi.org/10.1557/s43578-023-01102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01102-w

Keywords

Navigation