Skip to main content
Log in

1T’-RuO\(_2\) monolayer: First-principles study of excitonic, optoelectronic, vibrational, and thermodynamic properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The monoclinic 1T’-RuO\(_2\) monolayer have been studied using density functional theory (DFT) considering the norm-conserved pseudopotentials within the generalized gradient approximation (GGA) and the hybrid functional HSE06. A direct bandgap \(E_g=0.35\) eV (\(E_g=1.11\) eV) was obtained within the GGA-PBE (HSE06) level of calculation, while a combination of a Tight binding plus BSE (TB+BSE) approach was applied for the investigation of optical and excitonic properties. 1T’-RuO\(_2\) exhibits significant absorption in the ultraviolet and visible regions and also shows a strong optical linear dichroism. The solution of Bethe–Salpeter equation showed relevant excitonic effects in this system, with an exciton binding energy of 0.69 eV. In addition, the infrared and Raman spectra were obtained and assigned, as well as, the phonon dispersion relation. Finally, from the thermodynamics potentials calculations within the PBE functional, the free Gibbs energy indicates that this monolayer could be potentially synthesized spontaneously at low temperatures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on request. DFT calculations were performed with the CASTEP code (www.castep.org), Quantum Espresso (www.quantum-espresso.org), and Wannier90 code (www.wannier.org).

References

  1. D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li et al., A review on mechanics and mechanical properties of 2d materials-graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017). https://doi.org/10.1016/j.eml.2017.01.008

    Article  Google Scholar 

  2. X. Yin, C.S. Tang, Y. Zheng, J. Gao, J. Wu, H. Zhang, M. Chhowalla, W. Chen, A.T. Wee, Recent developments in 2d transition metal dichalcogenides: phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. (2021). https://doi.org/10.1039/D1CS00236H

    Article  Google Scholar 

  3. Y. Yin, Z. Zhang, C. Shao, J. Robertson, Y. Guo, Computational study of transition metal dichalcogenide cold source mosfets with sub-60 mv per decade and negative differential resistance effect. Mater. Appl. 6(1), 1–8 (2022). https://doi.org/10.1038/s41699-022-00332-6

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H.L. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science 315(5817), 1379–1379 (2007). https://doi.org/10.1126/science.1137201

    Article  CAS  Google Scholar 

  7. R. Xu, X. Zou, B. Liu, H.M. Cheng, Computational design and property predictions for two-dimensional nanostructures. Mater. Today 21(4), 391–418 (2018). https://doi.org/10.1016/j.mattod.2018.03.003

    Article  CAS  Google Scholar 

  8. A. Dias, H. Braganca, J.P.A. de Mendonca, J.L. Da Silva, Excitonic effects on two-dimensional transition-metal dichalcogenide monolayers: impact on solar cell efficiency. ACS Appl. Energy Mater. 4(4), 3265–3278 (2021). https://doi.org/10.1021/acsaem.0c03039

    Article  CAS  Google Scholar 

  9. A.C. Dias, H. Bragança, M.P. Lima, J.L. Da Silva, First-principles investigation of the role of cr in the electronic properties of the two-dimensional mo x cr 1–x se 2 and w x cr 1–x se 2 alloys. Phys. Rev. Mater. 6(5), 054001 (2022)

    Article  CAS  Google Scholar 

  10. H. Liu, Y. Du, Y. Deng, D.Y. Peide, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/C4CS00257A

    Article  CAS  Google Scholar 

  11. M.C. Lemme, L.J. Li, T. Palacios, F. Schwierz, Two-dimensional materials for electronic applications. Mrs Bull. 39(8), 711–718 (2014). https://doi.org/10.1557/mrs.2014.138

    Article  CAS  Google Scholar 

  12. J. Ji, J.H. Choi, Recent progress in 2d hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics. Nanoscale (2022). https://doi.org/10.1039/D2NR01358D

    Article  Google Scholar 

  13. Z. Cheng, R. Cao, K. Wei, Y. Yao, X. Liu, J. Kang, J. Dong, Z. Shi, H. Zhang, X. Zhang, 2d materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv. Sci. 8(11), 2003834 (2021). https://doi.org/10.1002/advs.202003834

    Article  CAS  Google Scholar 

  14. J.S. Ponraj, Z.-Q. Xu, S.C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey et al., Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27(46), 462001 (2016)

    Article  Google Scholar 

  15. G. Pippia, A. Rousaki, M. Barbone, J. Billet, R. Brescia, A. Polovitsyn, B. Martín-García, M. Prato, F. De Boni, M.M. Petric et al., Colloidal continuous injection synthesis of fluorescent mox2 (x= s, se) nanosheets as a first step toward photonic applications. ACS Appl. Nano Mater. 5(8), 10311–10320 (2022). https://doi.org/10.1021/acsanm.2c01470

    Article  CAS  Google Scholar 

  16. Y.P. Feng, L. Shen, M. Yang, A. Wang, M. Zeng, Q. Wu, S. Chintalapati, C.-R. Chang, Prospects of spintronics based on 2d materials. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7(5), 1313 (2017). https://doi.org/10.1002/wcms.1313

    Article  CAS  Google Scholar 

  17. W. Zhang, P.K.J. Wong, R. Zhu, A.T. Wee, Van der waals magnets: wonder building blocks for two-dimensional spintronics? InfoMat 1(4), 479–495 (2019). https://doi.org/10.1002/inf2.12048

    Article  CAS  Google Scholar 

  18. J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Valleytronics in 2d materials. Nat. Rev. Mater. 1(11), 1–15 (2016). https://doi.org/10.1038/natrevmats.2016.55

    Article  CAS  Google Scholar 

  19. L. Lin, W. Lei, S. Zhang, Y. Liu, G.G. Wallace, J. Chen, Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019). https://doi.org/10.1016/j.ensm.2019.02.023

    Article  Google Scholar 

  20. S. Rashidi, S. Rashidi, R.K. Heydari, S. Esmaeili, N. Tran, D. Thangi, W. Wei, Ws2 and mos2 counter electrode materials for dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 29(2), 238–261 (2021). https://doi.org/10.1002/pip.3350

    Article  CAS  Google Scholar 

  21. N. Alinejadian, L. Kollo, I. Odnevall, Progress in additive manufacturing of mos2-based structures for energy storage applications-a review. Mater. Sci. Semicond. Process. 139, 106331 (2022)

    Article  CAS  Google Scholar 

  22. R. Tokarz-Sobieraj, R. Gryboś, M. Witko, Electronic structure of moo2 dft periodic and cluster model studies. Appl. Catal. A General 391(1–2), 137–143 (2011). https://doi.org/10.1016/j.apcata.2010.07.041

    Article  CAS  Google Scholar 

  23. D. Wang, Z.-P. Liu, W.M. Yang, Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on tio2 support: a dft study. ACS Catal. 8(8), 7270–7278 (2018). https://doi.org/10.1021/acscatal.8b01886

    Article  CAS  Google Scholar 

  24. Z. Zarhri, M.Á.A. Cardos, Y. Ziat, M. Hammi, O. El Rhazouani, J.C.C. Argüello, D.A. Avellaneda, Synthesis, structural and crystal size effect on the optical properties of sprayed tio2 thin films: experiment and dft tb-mbj. J. Alloys Compd. 819, 153010 (2020)

    Article  CAS  Google Scholar 

  25. A. Kumar, P. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1h-mx2 (m= mo, w; x= s, se, te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 85(6), 1–7 (2012). https://doi.org/10.1140/epjb/e2012-30070-x

    Article  CAS  Google Scholar 

  26. M. Kang, B. Kim, S.H. Ryu, S.W. Jung, J. Kim, L. Moreschini, C. Jozwiak, E. Rotenberg, A. Bostwick, K.S. Kim, Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17(3), 1610–1615 (2017). https://doi.org/10.1021/acs.nanolett.6b04775

    Article  CAS  Google Scholar 

  27. Z.G. Yu, B.I. Yakobson, Y.W. Zhang, Realizing indirect-to-direct band gap transition in few-layer two-dimensional mx2 (m= mo, w; x= s, se). ACS Appl. Energy Mater. 1(8), 4115–4121 (2018). https://doi.org/10.1021/acsaem.8b00774

    Article  CAS  Google Scholar 

  28. V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth, A.C. Leatherdale, H.J. Eisler, M. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490), 314–317 (2000). https://doi.org/10.1126/science.290.5490.314

    Article  CAS  Google Scholar 

  29. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao et al., Electrically tunable excitonic light-emitting diodes based on monolayer wse2 p-n junctions. Nat. Nanotechnol. 9(4), 268–272 (2014). https://doi.org/10.1038/nnano.2014.26

    Article  CAS  Google Scholar 

  30. H. Huang, X. Fan, D.J. Singh, W. Zheng, Recent progress of tmd nanomaterials: phase transitions and applications. Nanoscale 12(3), 1247–1268 (2020). https://doi.org/10.1039/C9NR08313H

    Article  CAS  Google Scholar 

  31. Z. Lai, Y. Yao, S. Li, L. Ma, Q. Zhang, Y. Ge, W. Zhai, B. Chi, B. Chen, L. Li et al., Salt-assisted 2h-to-1t-phase transformation of transition metal dichalcogenides. Adv. Mater. (2022). https://doi.org/10.1002/adma.202201194

    Article  Google Scholar 

  32. A. Silva, J. Cao, T. Polcar, D. Kramer, Design guidelines for two-dimensional transition metal dichalcogenide alloys. Chem. Mater. (2022). https://doi.org/10.1021/acs.chemmater.2c01390

    Article  Google Scholar 

  33. F. Moucherek, W. Santos, A. Novais, E. Moreira, D. Azevedo, Prediction of electronic and optical properties of monoclinic 1t’-phase osse2 monolayer using dft principles. Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.104764

    Article  Google Scholar 

  34. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt, N.F. Hinsche, M.N. Gjerding, D. Torelli, P.M. Larsen, A.C. Riis-Jensen et al., The computational 2d materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5(4), 042002 (2018). https://doi.org/10.1088/2053-1583/aacfc1

    Article  CAS  Google Scholar 

  35. M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N.R. Knøsgaard, M. Kruse, A.H. Larsen, S. Manti et al., Recent progress of the computational 2d materials database (c2db). 2D Mater. 8(4), 044002 (2021). https://doi.org/10.1088/2053-1583/ac1059

    Article  CAS  Google Scholar 

  36. B.E. Brown, The crystal structures of wte2 and high-temperature mote2. Acta Crystallogr. 20(2), 268–274 (1966). https://doi.org/10.1107/S0365110X66000513

    Article  CAS  Google Scholar 

  37. X. Lu, P. Zhou, S. Chen, L. Sun, Strain-induced two-dimensional topological insulators in monolayer 1t-ruo2. J. Phys. Condens. Matter 34(47), 475502 (2022)

    Article  CAS  Google Scholar 

  38. F. Ersan, H. Ozaydin, O. Üzengi Aktürk, Stable monolayer of the ruo2 structure by the peierls distortion. Philos. Mag. 99(3), 376–385 (2019). https://doi.org/10.1080/14786435.2018.1538576

    Article  CAS  Google Scholar 

  39. W. Kohn, L.J. Sham, Selft-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), 1133–1138 (1965). https://doi.org/10.1103/PHYSREV.140.A1133

    Article  Google Scholar 

  40. Y.Z. Abdullahi, Electronic and magnetic properties of ruo2 monolayer: Dft+ u investigation. Comput. Condens. Matter 29, 00614 (2021). https://doi.org/10.1016/j.cocom.2021.e00614

    Article  Google Scholar 

  41. ASTM-G173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface (ASTM International, West Conshohocken, 2012)

    Google Scholar 

  42. J. Lu, F. Qu, H. Zeng, A. Cavalheiro Dias, D.S. Bradão, J. Ren, Intrinsic valley splitting and direct-to-indirect band gap transition in monolayer HfZrSiCO2. J. Phys. Chem. Lett. (2022). https://doi.org/10.1021/acs.jpclett.2c01090

    Article  Google Scholar 

  43. S. Baroni, S. Gironcoli, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Modern Phys. 73(2), 515–562 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  CAS  Google Scholar 

  44. D. Porezag, M.R. Pederson, Infrared intensities and raman-scattering activities within density-functional theory. Phys. Rev. B 54(11), 7830–7836 (1996). https://doi.org/10.1103/PhysRevB.54.7830

    Article  CAS  Google Scholar 

  45. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using castep. Zeitschrift Für Kristallographie - Crystal. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  46. E. Moreira, C.A. Barboza, E.L. Albuquerque, U.L. Fulco, J.M. Henriques, A.I. Araújo, Vibrational and thermodynamic properties of orthorhombic casno3 from dft and dfpt calculations. J. Phys. Chem. Solids 77, 85–91 (2015). https://doi.org/10.1016/j.jpcs.2014.09.016

    Article  CAS  Google Scholar 

  47. S.S. Coutinho, M.S. Tavares, C.A. Barboza, N.F. Frazão, E. Moreira, D.L. Azevedo, 3r and 2h polytypes of mos2: Dft and dfpt calculations of structural, optoelectronic, vibrational and thermodynamic properties. J. Phys. Chem. Solids 111, 25–33 (2017). https://doi.org/10.1016/j.jpcs.2017.07.010

    Article  CAS  Google Scholar 

  48. N. Fatahi, D. Hoat, A. Laref, S. Amirian, A. Reshak, M. Naseri, 2d hexagonal snte monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties. Eur. Phys. J. B 93(2), 1–7 (2020). https://doi.org/10.1140/epjb/e2020-100543-6

    Article  CAS  Google Scholar 

  49. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, Boston, 2022)

    Google Scholar 

  50. P. Hohenberg, W. Kohn, Inhomogeneous electron gas.  Phys. Rev. 136(3B), 864–871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  51. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PHYSREVLETT.78.1396

    Article  CAS  Google Scholar 

  52. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  53. J. Lin, A. Qteish, M. Payne, V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47(8), 4174 (1993). https://doi.org/10.1103/physrevb.47.4174

    Article  CAS  Google Scholar 

  54. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  55. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125(22), 224106 (2006)

    Article  Google Scholar 

  56. A. Seidl, A. Görling, P. Vogl, J.A. Majewski, M. Levy, Generalized kohn-sham schemes and the band-gap problem. Phys. Rev. B 53(7), 3764 (1996). https://doi.org/10.1103/PhysRevB.53.3764

    Article  CAS  Google Scholar 

  57. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  58. B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 131(1), 233–240 (1997). https://doi.org/10.1006/jcph.1996.5612

    Article  CAS  Google Scholar 

  59. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, Structural, optoelectronic, infrared and raman spectra of orthorhombic srsno3 from dft calculations. J Solid State Chem. 184(4), 921–928 (2011). https://doi.org/10.1016/j.jssc.2011.02.009

    Article  CAS  Google Scholar 

  60. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, Structural and electronic properties of srxba1-xsno3 from first principles calculations. J. Solid State Chem. 187, 186–194 (2012). https://doi.org/10.1016/j.jssc.2011.12.027

    Article  CAS  Google Scholar 

  61. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic basno3 from first principles calculations. J. Appl. Phys. 112(4), 043703 (2012)

    Article  Google Scholar 

  62. J.M. Henriques, C.A. Barboza, E.L. Albuquerque, U.L. Fulcom, E. Moreira, Structural, optoelectronic, infrared and raman spectra from first principles calculations of -cd(oh)2. J. Phys. Chem. Solids 76, 45–50 (2015). https://doi.org/10.1016/j.jpcs.2014.08.003

    Article  CAS  Google Scholar 

  63. W.D.S.A. Miranda, S.S. Coutinho, M.S. Tavares, E. Moreira, D.L. Azevedo, Ab initio vibrational and thermodynamic properties of adamantane, sila-adamantane (si10h16), and c9si1h16 isomers. J. Mol. Struct. 1122, 299–308 (2016). https://doi.org/10.1016/j.molstruc.2016.05.103

    Article  CAS  Google Scholar 

  64. R. Carvalho, M. Mendonça, M. Tavares, E. Moreira, D. Azevedo, Optoelectronic and thermodynamic properties, infrared and raman spectra of nbo2 and nb2o5 from dft formalism. J. Phys. Chem. Solids 163, 110549 (2022)

    Article  CAS  Google Scholar 

  65. F. Wu, F. Qu, A.H. MacDonald, Exciton band structure of monolayer MoS2. Phys. Rev. B 91(7), 075310 (2015)

    Article  Google Scholar 

  66. A.C. Dias, H. Bragança, H. Zeng, A.L.A. Fonseca, D.S. Liu, F. Qu, Large room-temperature valley polarization by valley-selective switching of exciton ground state. Phys. Rev. B (2020). https://doi.org/10.1103/physrevb.101.085406

    Article  Google Scholar 

  67. G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S.S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A.A. Mostofi, J.R. Yates, Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32(16), 165902 (2020)

    Article  CAS  Google Scholar 

  68. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  69. M.J. van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann, X. Gonze, G.-M. Rignanese, The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018). https://doi.org/10.1016/j.cpc.2018.01.012

    Article  CAS  Google Scholar 

  70. A.C. Dias, J.F.R.V. Silveira, F. Qu, Wantibexos: a wannier based tight binding code for electronic band structure, excitonic and optoelectronic properties of solids. Comput. Phys. Commun. (2022). https://doi.org/10.1016/j.cpc.2022.108636

    Article  Google Scholar 

  71. M.S. Ozório, A.C. Dias, J.F.R.V. Silveira, J.L.F.D. Silva, Theoretical investigation of the role of anion and trivalent cation substitution in the physical properties of lead-free zero-dimensional perovskites. J. Phys. Chem. C 126(16), 7245–7255 (2022). https://doi.org/10.1021/acs.jpcc.2c00494

    Article  CAS  Google Scholar 

  72. J.F.R.V. Silveira, R. Besse, A.C. Dias, N.A.M.S. Caturello, J.L.F.D. Silva, Tailoring excitonic and optoelectronic properties of transition metal dichalcogenide bilayers. J. Phys. Chem. C 126(21), 9173–9184 (2022). https://doi.org/10.1021/acs.jpcc.2c02023

    Article  CAS  Google Scholar 

  73. C.A. Rozzi, D. Varsano, A. Marini, E.K.U. Gross, A. Rubio, Exact coulomb cutoff technique for supercell calculations. Phys. Rev. B (2006). https://doi.org/10.1103/physrevb.73.205119

    Article  Google Scholar 

  74. Alexander L. Fetter, Quantum Theory of Many-Particle Systems (Dover Publications, New York, 2003)

    Google Scholar 

  75. E.E. Salpeter, H.A. Bethe, A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232–1242 (1951). https://doi.org/10.1103/physrev.84.1232

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian Research Agencies for financial support: Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão-FAPEMA (Universal-01108/19), Fundação de Amparo a Pesquisa do Estado de Mato Grosso-FAPEMAT (PRONEX CNPq/ FAPEMAT 850109/2009), Fundação de Apoio à Pesquisa do Distrito Federal-FAP-DF (Edital 04/2017), the State University of Maranhão (chamada interna n.04/2021-PPG/UEMA), Centro Nacional de Processamento de Alto Desempenho em São Paulo-CENAPAD-SP, Lobo Carneiro HPC from Núcleo de Atendimento em Computação de Alto Desempenho-NACAD/UFRJ, and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Proc.315623/2021-7-PQ-2).

Author information

Authors and Affiliations

Authors

Contributions

WOS carried out the calculations; ACD: developed theory and performed the simulations of the optical and excitonic properties; FMOM, EM, and DLA developed the theory and calculations. All authors analyzed and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to E. Moreira.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, W.O., Moucherek, F.M.O., Dias, A.C. et al. 1T’-RuO\(_2\) monolayer: First-principles study of excitonic, optoelectronic, vibrational, and thermodynamic properties. Journal of Materials Research 38, 3677–3689 (2023). https://doi.org/10.1557/s43578-023-01091-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01091-w

Keywords

Navigation