Skip to main content
Log in

Bioinspired and biomimetic membranes using ion channel proteins and designer peptides conjugated with graphene oxide for selective ion transport

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent advances in synthetic membrane technologies for purification and desalination of water and biotechnology are actively pursued. However, limited performance of current solid-state membranes calls for novel formulations offering both high permeability (ion and water flux) and ion differentiation (selectivity), considered as antagonist features. We report the development of hybrid nanoporous membranes comprising polycarbonate track-etched pores in which biological ion channels Gramicidin-A, alpha-hemolysin (α-HL), and outer-membrane protein F (OmpF) aquaporins are confined, and graphene oxide-conjugated cobalt ion-selective binding peptide motifs (Copep) are adsorbed, referred as bioinspired and biomimetic approaches, respectively. These solid-state nanoporous membranes offer scalability, mechanical robustness, selectivity, controlled pore dimension, and shape, for sustainable water production. The ion permeability, ion diffusion coefficient, and selective ion recognition are evaluated via nanofiltration, cell diffusion kinetics, and UV–Visible absorption spectroscopy. The experimental findings elucidate key performance parameters (ion confinement, rich surface chemistry, peptide-induced channel for selective ion transport) and provide new avenues for artificial ion channels by synergistic combination of eco-friendly material design such as GO enabled bio-molecular recognition chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. C.A. Grady, S.-C. Weng, E.R. Blatchley III., Potable water (Springer, Cham, 2014), pp.37–59

    Google Scholar 

  2. R. Jain, Providing safe drinking water: a challenge for humanity. Clean Technol. Environ. Policy 14, 1–9 (2012)

    Google Scholar 

  3. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)

    CAS  Google Scholar 

  4. https://www.nsf.gov/pubs/2018/nsf18545/nsf18545.htm

  5. D.L. Shaffer, N.Y. Yip, J. Gilron, M. Elimelech, Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Memb. Sci. 415, 1–8 (2012)

    Google Scholar 

  6. L. Huang, M. Zhang, C. Li, G. Shi, Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6, 2806–2815 (2015)

    CAS  Google Scholar 

  7. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci Technol. 47, 3715–3723 (2013)

    CAS  Google Scholar 

  8. M. Elimelech, The global challenge for adequate and safe water. J. Water Supply. Res. Technol. 55, 3–10 (2006)

    Google Scholar 

  9. F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015)

    CAS  Google Scholar 

  10. D. Chohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014)

    Google Scholar 

  11. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)

    CAS  Google Scholar 

  12. T. Basile, A. Petrella, M. Petrella, G. Boghetich, V. Petruzzelli, S. Colasuonno, D. Petruzzelli, Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: an EU perspective. Ind. Eng. Chem. Res. 50, 8389–8401 (2011)

    CAS  Google Scholar 

  13. M. Buonomenna, Nano-enhanced reverse osmosis membranes. Desalination 314, 73–80 (2013)

    CAS  Google Scholar 

  14. S. Gupta, A. Henson, B. Evans, Novel formulations for scalable multilayer nanoporous graphene-based membranes for use in efficient water detoxification revisited. Desalin. Water Treat. 169(59–71), 36 (2019)

    Google Scholar 

  15. S. Garaj, S. Liu, J.A. Golovchenko, D. Branton, Molecule-hugging graphene nanopores. Proc. Nat. Acad. Sci. 110, 12192–12196 (2013)

    CAS  Google Scholar 

  16. M. Elimelech, The global challenge for adequate and safe water. J. Water Supply: Res. Technol. 55, 3–10 (2006)

    Google Scholar 

  17. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011)

    CAS  Google Scholar 

  18. S. Gupta, B. Evans, Interplay of graphene oxide and interfacial polymerized polyamide-crosslinked thin-film composite membranes for enhanced performance during reverse osmosis. Desalin. Water Treat. 218, 177–192 (2021)

    CAS  Google Scholar 

  19. G.M. Geise, H.S. Lee, D.J. Miller, B.D. Freeman, J.E. Mcgrath, D.R. Paul, Water purification by membranes: the role of polymer science. J. Polym. Sci. Part B: Polym. Phys. 48, 1685–1718 (2010)

    CAS  Google Scholar 

  20. C.R. Martin, M. Nishizawa, K. Jirage, M.S. Kang, S.B. Lee, Controlling ion–transport selectivity in gold nanotubule membranes. Adv. Mater. 13, 1351–1362 (2001)

    CAS  Google Scholar 

  21. M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O.J. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. facile incorporation of biorecognition elements into nanoconfined geometries. Am Chem Soc 130, 16351–16357 (2008)

    CAS  Google Scholar 

  22. I. Vlassiouk, T.R. Kozel, Z.S. Siwy, Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 131, 8211–8220 (2009)

    CAS  Google Scholar 

  23. S. Majd, E.C. Yusko, Y.N. Billeh, M.X. Macrae, J. Yang, M. Mayer, Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 21, 439–476 (2010)

    CAS  Google Scholar 

  24. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012)

    CAS  Google Scholar 

  25. J. Zhao, X. Zhao, Z. Jiang, Z. Li, X. Fan, J. Zhu, H. Wu, Y. Su, D. Yang, F. Pan, J. Shi, Biomimetic and bioinspired membranes: preparation and application. Prog. In Polym. Sci. 39, 1668–1720 (2014)

    CAS  Google Scholar 

  26. S.P. Tsunoda, B. Wiesner, D. Lorenz, W. Rosenthal, P. Pohl, Aquaporin-1, nothing but a water channel. J. Biol. Chem. 279, 11364–11367 (2004)

    CAS  Google Scholar 

  27. B. Hille, In ion channels of excitable membranes, 3rd edn. (Sinauer Associates, Sunderland, MA, 2001)

    Google Scholar 

  28. S. Gupta, J. Dura, A. Freites, D. Tobias, J.K. Blasie, Structural characterization of the voltage sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer at the solid/vapor and solid/liquid interfaces via neutron interferometry. Langmuir 28, 10504–10520 (2012)

    CAS  Google Scholar 

  29. A. Tronin, C.-H. Chen, S. Gupta, D. Worcester, V. Lauter, J. Strzalka, I. Kuzmenko, J.K. Blasie, Structural changes in single phospholipid membranes in response to an applied transmembrane electric potential revealed by time-resolved neutron/X-ray interferometry. Chem. Phys. 422, 283–289 (2013)

    CAS  Google Scholar 

  30. S. Gupta, J. Liu, J. Strzalka, J.K. Blasie, Profile structure of the voltage sensor domain and KvAP channel within single membranes via X-ray interferometry. Phys Rev E 84, 031911–032115 (2011)

    CAS  Google Scholar 

  31. K. Ariga, Silica-supported biomimetic membranes. Chem. Rec. 4, 59–59 (2004)

    CAS  Google Scholar 

  32. W. Meier, C. Nardin, M. Winterhalter, Reconstitution of channel proteins in (Polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Ed. 39, 4599 (2000)

    CAS  Google Scholar 

  33. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc. Natl. Acad. Sci. U.S.A. 104, 20719–20724 (2007)

    CAS  Google Scholar 

  34. A. Gonzalez-Perez, K.B. Stibius, T. Vissing, C.H. Nielsen, O.G. Mouritsen, Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins. Langmuir 25, 10447–10450 (2009)

    CAS  Google Scholar 

  35. C. Dekker, Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007)

    CAS  Google Scholar 

  36. M. Ali, S. Nasir, Q.H. Nguyen, J.K. Sahoo, M.N. Tahir, W. Tremel, W. Ensinger, Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron–terpyridine complexes. J. Am. Chem. Soc. 133, 17307–17314 (2011)

    CAS  Google Scholar 

  37. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015)

    CAS  Google Scholar 

  38. M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016)

    CAS  Google Scholar 

  39. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014)

    CAS  Google Scholar 

  40. D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based desalination membranes. Langmuir 29(11884–11897), 38 (2013)

    Google Scholar 

  41. H.B. Wang, Q. Zhang, X. Chu, T.T. Chen, J. Ge, R.Q. Yu, Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. 50, 7065–7069 (2011)

    CAS  Google Scholar 

  42. L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537–544 (2010)

    CAS  Google Scholar 

  43. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–436 (2012)

    Google Scholar 

  44. A. Calvo, B. Yameen, F.J. Williams, G. Soler-Illia, O. Azzaroni, Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J. Am. Chem. Soc. 131, 10866–10868 (2009)

    CAS  Google Scholar 

  45. H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013)

    CAS  Google Scholar 

  46. A. Cazacu, Y.M. Legrand, A. Pasc, G. Nasr, A. Van der Lee, E. Mahon, M. Barboiu, Dynamic hybrid materials for constitutional self-instructed membranes. Proc. Natl. Acad. Sci. U.S.A. 106, 8117–8122 (2009)

    CAS  Google Scholar 

  47. P. Kohli, C.C. Harrell, Z.H. Cao, R. Gasparac, W.H. Tan, C.R. Martin, DNA−nanotube artificial ion channels. Science 305, 984–986 (2004)

    CAS  Google Scholar 

  48. S. Kim, J. Nham, Y.S. Jeong, C.S. Lee, S.H. Ha, H.B. Park, Y.J. Lee, Biomimetic selective ion transport through graphene oxide membranes functionalized with ion recognizing peptides. Chem. Mater. 27, 1255–1261 (2015)

    CAS  Google Scholar 

  49. S. Balme, J.-M. Janot, L. Berardo, F. Henn, D. Bonherry, S. Kraszewski, F. Picaud, C. Ramseyer, New bioinspired membrane made of a biological ion channel confined into the cylindrical nanopore of a solid-state polymer. Nano Lett. 11, 712–716 (2011)

    CAS  Google Scholar 

  50. W. Guo, L.X. Cao, J.C. Xia, F.Q. Nie, W. Ma, J.M. Xue, Y.L. Song, D.B. Zhu, Y.G. Wang, L. Jiang, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010)

    CAS  Google Scholar 

  51. http://www.uniprot.org/

  52. K.M. Williams, E.C. Bigley 3rd., R.B. Raybourne, Identification of murine B-cell and T-cell epitopes of Escherichia coli outer membrane protein F with synthetic polypeptides. Infect Immun. 68(2535–2545), 39 (2000)

    Google Scholar 

  53. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)

    CAS  Google Scholar 

  54. U. Hersel, C. Dahmen, H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003)

    CAS  Google Scholar 

  55. C.L. Chen, N.L. Rosi, Peptide-based methods for the preparation of nanostructured inorganic materials. Angew. Chem. Int. Ed. 49, 1924–1942 (2010)

    CAS  Google Scholar 

  56. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000)

    CAS  Google Scholar 

  57. D.Y. Oh, X.N. Dang, H.J. Yi, M.A. Allen, K. Xu, Y.J. Lee, A.M. Belcher, Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials. Small 8, 1006–1011 (2012)

    CAS  Google Scholar 

  58. B. He, G. Chai, Y. Duan, Z. Yan, L. Qiu, H. Zhang, Z. Liu, Q. He, K. Han, B. Ru, F.-B. Guo, H. Ding, H. Lin, X. Wang, N. Rao, P. Zhou, J. Huang, BDB: biopanning data bank. Nucleic Acids Res. 44, D1127–D1132 (2016)

    CAS  Google Scholar 

  59. S.K. Lee, D.S. Yun, A.M. Belcher, Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co−Pt hybrid material. Biomacromol 7, 14–17 (2006)

    CAS  Google Scholar 

  60. S. Balme, J.M. Janot, P. Dejardin, E.N. Vasina, P. Seta, Potentialities of confocal fluorescence for investigating protein adsorption on mica and in ultrafiltration membranes. J. Memb. Sci. 284, 198–204 (2006)

    CAS  Google Scholar 

  61. A. Plecis, R.B. Schoch, P. Renaud, Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5, 1147–1155 (2005)

    CAS  Google Scholar 

  62. M. Barboiu, Y. Le Duc, A. Gilles, P.A. Cazade, M. Michau, Y.M. Legrand, A. van der Lee, B. Coasne, P. Parvizi, J. Post, T. Fyles, An artificial primitive mimic of the gramicidin-A channel. Nat. Commun. 5, 4142–4146 (2014)

    CAS  Google Scholar 

  63. X.S. Sun, C.L. Xiao, R.G. Ge, X.F. Yin, H. Li, N. Li, X.Y. Yang, Y. Zhu, X. He, Q.Y. He, Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics 11(3288–3298), 40 (2011)

    Google Scholar 

  64. B. Corry, Mechanisms of selective ion transport and salt rejection in carbon nanostructures. MRS Bull. 42, 306–310 (2017)

    CAS  Google Scholar 

  65. P.W. Atkins, Physical chemistry, 5th edn. (Oxford University Press, Oxford, 1992)

    Google Scholar 

  66. S.P. Pinho, E.A. Macedo, Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents. J. Chem. Eng. Data 50, 29–32 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

The author (S.G.) gratefully acknowledges the financial support by NSF-MRI (Grant# 1429563), KY NSF EPSCoR RSP (Subaward# 3200000271-17-212), and co-author (T.R.) for researcher scholarship, and internal RCAP WKU Foundation award. The undergraduate student co-authors (T.R., B.E.) are grateful to John Andersland (Biology) and Naomi Rowland (Biology) for scanning electron microscopy and confocal fluorescence spectroscopy training, respectively.

Funding

National Science Foundation-MRI 1429563, Sanju Gupta

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to conceptualization, investigation, data curation, analysis, supervision, funding acquisition, resources, writing—original draft, reviewing, and editing. TR contributed to data curation and analysis. BE contributed to data curation and analysis.

Corresponding author

Correspondence to S. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Robinson, T. & Evans, B. Bioinspired and biomimetic membranes using ion channel proteins and designer peptides conjugated with graphene oxide for selective ion transport. Journal of Materials Research 38, 3519–3535 (2023). https://doi.org/10.1557/s43578-023-01076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01076-9

Keywords

Navigation