Skip to main content
Log in

Preparation of highly transparent and wear-resistant SiO2 coating by alkali/acid dual catalyzed sol–gel method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a sol–gel method was adopted, using tetraethyl orthosilicate (TEOS) as a precursor, to prepare hollow silica spheres through alkali-catalyzed sol, and further to form a long-chain structure through acid catalysis. The alkali-aluminosilicate glass is coated with hollow silica spheres by a dip coating method, and the anti-reflection (AR) nanostructured silica coatings with different thicknesses and porosities are obtained. The prepared hollow silica spheres have an inner diameter of 20 nm and a wall thickness of 6–20 nm. The average transmittance of the coating at normal incidence within the wavelength range of 300–900 nm is between 94 and 96.9%, a great improvement compared with 91.8% of the substrate. Hollow spherical and long-chain structure of silica is conducive to film formation on the glass surface and endows the film with a high mechanical strength. After 60 friction cycles, the average transmittance is only decreased by 0.6%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. A. Amri, Z.T. Jiang, N. Wyatt, C.Y. Yin, M.M. Rahman, Optical properties and thermal durability of copper cobalt oxide thin film coatings with integrated silica antireflection layer. Ceram. Int. 40, 16569–16575 (2014). https://doi.org/10.1016/j.ceramint.2014.08.012

    Article  CAS  Google Scholar 

  2. Nakagawa, Kenichi, Liquid crystal projector, liquid crystal device and substrate for liquid crystal device: US, US7554635 B2. 2009.

  3. R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea, A. Aranzabe, Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Energy Mater. Sol. Cells 94, 1081–1088 (2010). https://doi.org/10.1016/j.solmat.2010.02.031

    Article  CAS  Google Scholar 

  4. M.C. Bautista, A. Morales, Silica antireflective films on glass produced by the sol–gel method. Sol. Energy Mater. Sol. Cells. 80, 217–225 (2003). https://doi.org/10.1016/j.solmat.2003.06.004

    Article  CAS  Google Scholar 

  5. M. Chigane, Y. Hatanaka, T. Shinagawa, Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment. Sol. Energy Mater. Sol. Cells. 94, 1055–1058 (2010). https://doi.org/10.1016/j.solmat.2010.02.024

    Article  CAS  Google Scholar 

  6. T. Muromachi, T. Tsujino, K. Kamitani, K. Maeda, Application of functional coatings by sol–gel method. J. Solgel Sci. Technol. 40, 267–272 (2006). https://doi.org/10.1007/s10971-006-8386-7

    Article  CAS  Google Scholar 

  7. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  8. Z.Q. Guo, Y. Liu, M.Y. Tang, J.H. Wang, X.P. Su, Super-durable closed-surface antireflection thin film by silica nanocomposites. Colloid Interface Sci. 170, 143–148 (2017). https://doi.org/10.1016/j.solmat.2017.05.043

    Article  CAS  Google Scholar 

  9. J.Q. Xi, J.K. Kim, E.F. Schubert, Silica nanorod-array films with very low refractive indices. Nano Lett. 5, 1385–1387 (2005). https://doi.org/10.1021/nl050698k

    Article  CAS  Google Scholar 

  10. M. Vilarigues, R. Silva, Characterization of potash-glass corrosion in aqueous solution by ion beam and IR spectroscopy. J. Non Cryst. Solids. 352, 5368–5375 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.08.032

    Article  CAS  Google Scholar 

  11. I.M. Thomas, High laser damage threshold porous silica antireflective coating. Appl. Opt. 25, 148–1483 (1986). https://doi.org/10.1364/AO.25.001481

    Article  Google Scholar 

  12. X. Zhang, P. Lan, Y. Lu, J. Li, H. Xu, J. Zhang, Y.P. Lee, J.Y. Rhee, K.L. Choy, W. Song, Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites. ACS Appl. Mater. Interfaces. 6, 1415–1423 (2014). https://doi.org/10.1021/am405258d

    Article  CAS  Google Scholar 

  13. Z. Guo, H. Zhao, W. Zhao, T. Wang, T. Chen, X. Zhang, High-quality hollow closed-pore silica antireflection coatings based on styrene-acrylate Emulsion @ organic-inorganic silica precursor. ACS Appl. Mater. Interfaces. 8, 11796–11805 (2016). https://doi.org/10.1021/acsami.6b02192

    Article  CAS  Google Scholar 

  14. C. Tao, H. Yan, X. Yuan, Q. Yin, J. Zhu, W. Ni, L. Yan, L. Zhang, Hydrophobic antireflective coatings with ultralow refractive index synthesized by deposition of methylated hollow silica nanoparticles. Mater. Lett. 183, 374–377 (2016). https://doi.org/10.1016/j.matlet.2016.07.042

    Article  CAS  Google Scholar 

  15. P. Buskens, M. Burghoorn, M.C. Mourad, Z. Vroon, Antireflective coatings for glass and transparent polymers. Langmuir 32, 6781–6793 (2016). https://doi.org/10.1021/acs.langmuir.6b00428

    Article  CAS  Google Scholar 

  16. M. Ogawa, Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J. Am. Chem. Soc. 116, 7941–7942 (1994). https://doi.org/10.1021/ja00096a079

    Article  CAS  Google Scholar 

  17. F. Guillemot, A. Brunet-Bruneau, E. Bourgeat-Lami, T. Gacoin, E. Barthel, Latex-templated silica films: tailoring porosity to get a stable low-refractive index. Chem. Mater. 22, 2822–2828 (2010). https://doi.org/10.1021/cm903754k

    Article  CAS  Google Scholar 

  18. Y. Mu, Ma. Jin, L. Cheng, Z.Z. Zhang, F. Yang, Y. Lu, General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. 10, 6727–6730 (2005). https://doi.org/10.1002/ange.200501556

    Article  Google Scholar 

  19. K.H. Nielsen, T. Kittel, K. Wondraczek, L. Wondraczek, Optical breathing of nano-porous antireflective coatings through adsorption and desorption of water. Sci. Rep. 4, 6595 (2014). https://doi.org/10.1038/srep06595

    Article  CAS  Google Scholar 

  20. C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang, H. Guan, Y. Wu, Y. Zhang, Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid. Mater. 5, 2906–2920 (2022). https://doi.org/10.1007/s42114-022-00482-7

    Article  CAS  Google Scholar 

  21. Y. Wan, S.H. Yu, Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. J. Phys. Chem. c 112, 3641–3647 (2008). https://doi.org/10.1021/jp710990b

    Article  CAS  Google Scholar 

  22. C.J. Carmalt, S. Sanjayan, I.P. Pakin, C.R. Crick, J.L. Song, L. Yao, Robust self-cleaning surfaces that function when exposed to either air or oil. Sci. Rep. 347, 1132–1135 (2015). https://doi.org/10.1126/science.aaa0946

    Article  CAS  Google Scholar 

  23. J. Lin, Preparation of high surface property silica gel materials by sol–gel method. J. Build. Mater. 1, 155–159 (1998)

    CAS  Google Scholar 

  24. J. Lin, Effect of catalyst on the hydrolysis-polymerization mechanism of ethyl orthosilicate. J. Inorg. Mater. 12, 363–369 (1997)

    CAS  Google Scholar 

  25. C.J. Brinker, Hydrolysis and condensation of silicates: effects on structure. J. Non-Cryst. Solids 100, 31–50 (1998). https://doi.org/10.1016/0022-3093(88)90005-1

    Article  Google Scholar 

  26. L.F. Wang, The optimum matching of single-layer-anti-reflective coatings with semiconductor solar cells. Acta Energiae Solaris Sinica. 10, 110–117 (1989). https://doi.org/10.19912/j.0254-0096.1989.01.014

    Article  CAS  Google Scholar 

  27. Yoldas, Investigations of porous oxides as an antireflective coating for glass surfaces. B. E. Appl. Opt. 19, 1425–1429 (1980). https://doi.org/10.1364/AO.19.001425

    Article  CAS  Google Scholar 

  28. K. Qingping, F. Wenqian, J. Huile, Z. Lei, T. Tiandi, Z. Jingfeng, Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane. Surf. Coat. Technol. 205, 4910–4914 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 117 KB)

Supplementary file2 (DOCX 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Yuan, J., Tian, P. et al. Preparation of highly transparent and wear-resistant SiO2 coating by alkali/acid dual catalyzed sol–gel method. Journal of Materials Research 38, 3316–3323 (2023). https://doi.org/10.1557/s43578-023-01062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01062-1

Keywords

Navigation