Skip to main content
Log in

A comparative study of antibacterial properties and label-free electrochemical detection of digoxin based on MWCNTs-chitosan-Fe3O4/TiO2 composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study formulates biocomposites of chitosan, multi-walled carbon nanotubes (MWCNTs), iron oxide, and titanium oxide, characterizes their physical properties, and evaluates their antibacterial and biosensor toward digoxin detection. SEM was used to investigate morphology, whereas FTIR analysis peaks of active compounds of chitosan, MWCNTs, and composites were observed. The composites demonstrate strong antibacterial effects having ZOI 25, 12 mm; 35, 3 mm; and 43, 12 mm using M-chitosan, M-chitosan-TiO2, M-chitosan-Fe3O4 against S. aureus and A. baumannii, respectively. The composites were deposited on GCSPE to detect serum digoxin using CV. The biosensor can detect digoxin in the range 0–50 fM and 0–100 fM, with a detection limit of 0.8 pM and 0.03 pM for M-chitosan-TiO2 and M-chitosan-Fe3O4. The prepared biosensor showed strong specific recognition properties, ease, affordability of preparation, sensitive, and enable routine clinical analysis to identify trace amounts of digoxin. Thus, the present study developed composites with improved functional properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data analyzed during the current study are available in the supplementary information.

References

  1. D. Bharathi, R. Rajamani, B.Z. Sibuh, S. Pandit, S. Agrawal, N. Mishra, P.K. Gupta, Biogenic preparation, characterization, and biomedical applications of chitosan functionalized iron oxide nanocomposite. J. Compos. Sci. 6(5), 120 (2022)

    Article  CAS  Google Scholar 

  2. H.M. Abdel-Mageed, N.Z. AbuelEzz, R.A. Radwan, S.A. Mohamed, Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J. Microencapsul. 38(6), 414–436 (2021)

    Article  CAS  Google Scholar 

  3. M.A. Sadique, S. Yadav, V. Khare, R. Khan, G.K. Tripathi, P.S. Khare, Functionalized titanium dioxide nanoparticle-based electrochemical immunosensor for detection of SARS-CoV-2 antibody. Diagnostics 12(11), 2612 (2022)

    Article  CAS  Google Scholar 

  4. D. Franco, G. Calabrese, S.P.P. Guglielmino, S. Conoci, Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms 10(9), 1778 (2022)

    Article  CAS  Google Scholar 

  5. N.A. Zakariya, W.H.W. Jusof, S. Majeed, Green approach for iron oxide nanoparticles synthesis: application in antimicrobial and anticancer-an updated review. Karbala Int. J. Modern Sci. 8(3), 421–437 (2022)

    Article  Google Scholar 

  6. R. Sokary, Abu el-naga, M. N., Bekhit, M., & Atta, S., A potential antibiofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ–irradiation. Mater. Technol. 37(7), 493–502 (2022)

    Article  CAS  Google Scholar 

  7. K. Chetankumar, B.K. Swamy, H.B. Naik, MgO and MWCNTs amplified electrochemical sensor for guanine, adenine and epinephrine. Mater. Chem. Phys. 267, 124610 (2021)

    Article  CAS  Google Scholar 

  8. K. Rovina, S. Siddiquee, S. MdShaarani, An electrochemical sensor for the determination of tartrazine based on CHIT/GO/MWCNTs/AuNPs composite film modified glassy carbon electrode. Drug Chem. Toxicol. 44(5), 447–457 (2021)

    Article  CAS  Google Scholar 

  9. S. Pitiphattharabun, K. Meesombad, G. Panomsuwan, O. Jongprateep, MWCNT/Ti-doped ZnO nanocomposite as electrochemical sensor for detecting glutamate and ascorbic acid. Int. J. Appl. Ceram. Technol. 19(1), 467–479 (2022)

    Article  CAS  Google Scholar 

  10. A. Alangari, M.S. Alqahtani, A. Mateen, M.A. Kalam, A. Alshememry, R. Ali, R. Syed, Iron oxide nanoparticles: preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorpt. Sci. Technol. 2022, 1–9 (2022)

    Article  Google Scholar 

  11. M. Al-Salih, S. Samsudin, S.S. Arshad, Synthesis and characterizations iron oxide carbon nanotubes nanocomposite by laser ablation for anti-microbial applications. J. Genet. Eng. Biotechnol. 19(1), 76 (2021)

    Article  Google Scholar 

  12. N. Zafar, B. Uzair, M.B.K. Niazi, S. Sajjad, G. Samin, M.J. Arshed, S. Rafiq, Fabrication & characterization of chitosan coated biologically synthesized TiO2 nanoparticles against PDR E. coli of veterinary origin. Adv. Polym. Technol. 2020, 1–13 (2020)

    Article  Google Scholar 

  13. K.A. Sukkar, S.A. Duha, A.A. Hussein, R.M. Mohammad, Synthesis and characterization hybrid materials (TiO2/MWCNTS) by chemical method and evaluating antibacterial activity against common microbial pathogens. Acta Phys. Pol. A 135(4), 588–592 (2019)

    Article  CAS  Google Scholar 

  14. A.A.H. Bukhari, Preparation, Characterization and anti-bacterial activity of chitosan/carbon nanotube nanocomposites. Indian J. Sci. Technol. 12, 15 (2019)

    Article  Google Scholar 

  15. R.R. Parikh, K.R. Patel, J.V. Pergolizzi Jr., F. Breve, P. Magnusson, Effects of digoxin in heart failure (HF) with reduced ejection fraction (EF). Cureus (2022). https://doi.org/10.7759/cureus.22778

    Article  Google Scholar 

  16. V. Eslami, F. Mortezapour, S. Samavat, S. Ziae, A. Gheymati, Evaluating plasma Digoxin concentration after an intravenous loading dose in patients with renal failure. Arch. Clin. Nephrol. 7(1), 033–037 (2021)

    Google Scholar 

  17. Y. He, Y. Zheng, Determination of digoxin glycoside in foxglove flower using Ag2S/CNTs nanocomposites. Int. J. Electrochem. Sci 17(221126), 2 (2022)

    Google Scholar 

  18. A. Ahmadi, H. Shirazi, N. Pourbagher, A. Akbarzadeh, K. Omidfar, An electrochemical immunosensor for digoxin using core–shell gold coated magnetic nanoparticles as labels. Mol. Biol. Rep. 41, 1659–1668 (2014)

    Article  CAS  Google Scholar 

  19. S.I. Khan, R.R. Chillawar, K.K. Tadi, R.V. Motghare, Molecular imprinted polymer based impedimetric sensor for trace level determination of digoxin in biological and pharmaceutical samples. Curr. Anal. Chem. 14(5), 474–482 (2018)

    Article  CAS  Google Scholar 

  20. B. Tserengombo, H. Jeong, E. Dolgor, A. Delgado, S. Kim, Effects of functionalization in different conditions and ball milling on the dispersion and thermal and electrical conductivity of MWCNTs in aqueous solution. Nanomaterials 11(5), 1323 (2021)

    Article  CAS  Google Scholar 

  21. M.A. Salam, R. Burk, Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab. J. Chem. 10, S921–S927 (2017)

    Article  CAS  Google Scholar 

  22. H. Soleimani, N. Yahya, M. Baig, L. Khodapanah, M. Sabet, M. Burda, M. Awang, Synthesis of carbon nanotubes for oil-water interfacial tension reduction. Oil Gas Res. 1(1), 1000104 (2015)

    Google Scholar 

  23. M. Eddya, B. Tbib, E.H. Khalil, A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon 6(2), e03486 (2020)

    Article  Google Scholar 

  24. S.H. Lim, S.M. Hudson, Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohyd. Res. 339(2), 313–319 (2004)

    Article  CAS  Google Scholar 

  25. R. Varma, S. Vasudevan, Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus. ACS Omega 5(32), 20224–20230 (2020)

    Article  CAS  Google Scholar 

  26. S.S.E. Bakhtiari, S. Karbasi, S.A.H. Tabrizi, R. Ebrahimi-Kahrizsangi, Chitosan/MWCNTs composite as bone substitute: Physical, mechanical, bioactivity, and biodegradation evaluation. Polym. Compos. 40(S2), E1622–E1632 (2019)

    Article  CAS  Google Scholar 

  27. B. Lesiak, N. Rangam, P. Jiricek, I. Gordeev, J. Tóth, L. Kövér, P. Borowicz, Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front. Chem. 7, 642 (2019)

    Article  CAS  Google Scholar 

  28. S. Das, S. Diyali, G. Vinothini, B. Perumalsamy, G. Balakrishnan, T. Ramasamy, B. Biswas, Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 6(9), e04953 (2020)

    Article  CAS  Google Scholar 

  29. W. Bing, H. Sun, Z. Yan, J. Ren, X. Qu, Programmed bacteria death induced by carbon dots with different surface charge. Small 12(34), 4713–4718 (2016)

    Article  CAS  Google Scholar 

  30. D.J. Dwyer, D.M. Camacho, M.A. Kohanski, J.M. Callura, J.J. Collins, Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 46(5), 561–572 (2012)

    Article  CAS  Google Scholar 

  31. C. Yang, J. Mamouni, Y. Tang, L. Yang, Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20), 16013–16019 (2010)

    Article  CAS  Google Scholar 

  32. D. Asli, O. Tulin, S. Necdet, Investigation of the usage of chitosan as an antimicrobial agent in textile industry. Tekstil ve Konfeksiyon 18, 94–102 (2008)

    Google Scholar 

  33. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117, 622–629 (2014)

    Article  CAS  Google Scholar 

  34. U.S. Ezealigo, B.N. Ezealigo, S.O. Aisida, F.I. Ezema, Iron oxide nanoparticles in biological systems: antibacterial and toxicology perspective. JCIS Open 4, 100027 (2021)

    Article  Google Scholar 

  35. J.C. Solís, M. Galicia, High performance of MWCNTs-chitosan modified glassy carbon electrode for voltammetric trace analysis of Cd (II). Int. J. Electrochem. Sci 15, 6815–6828 (2020)

    Article  Google Scholar 

  36. A. Aoboun, B. Cherdhirunkorn, C. Pechyen, Development of screen printed electrode using MWCNTs–TiO 2 nanocomposite as a low-cost device for uric acid detection in urine. J. Mater. Sci.: Mater. Electron. 30, 2403–2412 (2019)

    CAS  Google Scholar 

  37. M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5(1), 14813 (2015)

    Article  CAS  Google Scholar 

  38. W. Buraso, V. Lachom, P. Siriya, P. Laokul, Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Exp. 5(11), 115003 (2018)

    Article  Google Scholar 

  39. S. Sam, L. Touahir, J.S. Andresa, P. Allongue, J.N. Chazalviel, A.C. Gouget-Laemmel, C.H. De Villeneuve, A. Moraillon, F. Ozanam, N. Gabouze, S. Djebbar, Semiquantitative study of the EDC/NHS activation of acid terminalgroups at modified porous silicon surfaces. Langmuir 26, 809–814 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, provided the characterization facilities at the Material Science Laboratory. We also appreciate the cooperation of COMSATS University of Science and Technology in determining the antibacterial properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Rafique.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, S., Akram, R., Hussain, M. et al. A comparative study of antibacterial properties and label-free electrochemical detection of digoxin based on MWCNTs-chitosan-Fe3O4/TiO2 composites. Journal of Materials Research 38, 3199–3213 (2023). https://doi.org/10.1557/s43578-023-01059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01059-w

Keywords

Navigation