Skip to main content
Log in

Effect of DL-alanine as an auxiliary complexing agent in TSV copper film CMP

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The quality of the chemical mechanical polishing (CMP) process of the reactive Through Silicon Via (TSV) copper (Cu) film depends in large part on the slurry's planarization characteristic. Due to their non-polluting and excellent performance qualities, amino acid chemical additives have been extensively employed in the semiconductor and microelectronics sectors for the development of novel CMP slurries. In this investigation, the slurries used to create the TSV copper film contained DL-alanine as a key chemical constituent. It was discovered through CMP tests, UV–Vis spectroscopy, X-ray photoelectron spectroscopy, and electrochemical measurements that alanine could interact in a specific ratio with copper ions to form stable water-soluble Cu-alanine complexes, which could hasten the chemical dissolution of copper surface during CMP process. Additionally alanine was utilized as a supplementary complexing agent in glycine-based Cu film slurries, which resulted in a high removal rate, low static etching rate, and excellent surface quality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. J.H. Lau, Microelectron. Int. 28, 8–22 (2011). https://doi.org/10.1108/13565361111127304

    Article  CAS  Google Scholar 

  2. C. Kothandaraman, B. Himmel, J. Safran, J. Golz, G. Maier, M.G. Farooq, T. Graves-Abe, W. Landers, R. Volant, K. Petrarca, F. Chen, T.D. Sullivan, G. LaRosa, N. Robson, R. Hannon and S.S. Iyer. 2012 Ieee International Reliability Physics Symposium (irps)(Anaheim, CA)(2012)

  3. D. H. Lee, D. H. Kim, S. C. Han, J. H. Kim, J. S. Park, B. R. Jang, Y. S. Chung, S. M. Seo, Y. S. Kim and C. H. Lee. Electronic Components and Technology Conference (Orlando, FL, USA)(2014)

  4. K. Salah. 2014 9th International Design and Test Symposium (idt) (Algeries, Algeria)(2016)

  5. M. Shapiro, M. Interrante, P. Andry, B. Dang, C. Tsang, R. Liptak, J. Griffith, E. Sprogis, L. Guerin, V. Truong, D. Berger and J. Knickerbocker. 2009 Ieee International Interconnect Technology Conference (Sapporo, Japan) (2009)

  6. S.Q. Gu, U. Ray, Y. Li, A. Chandrasekaran, B. Henderson and M. Nowak. 2010 Ieee International Interconnect Technology Conference (Burlingame, CA, USA)(2010)

  7. Z. Xu, J.Q. Lu, IEEE Trans. Semicond. Manufact. 26, 23–34 (2013)

    Article  CAS  Google Scholar 

  8. H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Acta Materialia 61, 79–88 (2013). https://doi.org/10.1016/j.actamat.2012.09.030

    Article  CAS  Google Scholar 

  9. W.W. Shen, K.N. Chen, Nanoscale Res. Lett. 12, 56–57 (2017). https://doi.org/10.1186/s11671-017-1831-4

    Article  Google Scholar 

  10. J.V. Olmen, C. Huyghebaert, J. Coenen, J.V. Aelst, E. Sleeckx, A.V. Ammel, S. Armini, G. Katti, J. Vaes, W. Dehaene, E. Beyne, Y. Travaly, Microelectron. Eng. 88, 745–748 (2011). https://doi.org/10.1016/j.mee.2010.06.026

    Article  CAS  Google Scholar 

  11. K.D. Yin, S.L. Wang, Y.L. Liu, C.W. Wang, X. Li, J. Semicond. 34, 133–136 (2013). https://doi.org/10.1088/1674-4926/34/3/036002

    Article  CAS  Google Scholar 

  12. J. Hong, Y.L. Liu, B.G. Zhang, X.H. Niu, L.Y. Han, J. Semicond. 36, 147–150 (2015). https://doi.org/10.1088/1674-4926/36/12/126001

    Article  CAS  Google Scholar 

  13. J. Hong, X.H. Niu, Y.L. Liu, Y.G. He, B.G. Zhang, J. Wang, L.Y. Han, C.Q. Yan, J. Zhang, Appl. Surf. Sci. 378, 239–244 (2016). https://doi.org/10.1016/j.apsusc.2016.03.230

    Article  CAS  Google Scholar 

  14. S. Pandija, D. Roy, S.V. Babu, Microelectron. Eng. 86, 367–373 (2009). https://doi.org/10.1016/j.mee.2008.11.047

    Article  CAS  Google Scholar 

  15. J. Peng, L. Xia, W.J. Zou, Sureface Technology 41, 95–98 (2012). https://doi.org/10.16490/j.cnki.issn.1001-3660.2012.04.032

    Article  CAS  Google Scholar 

  16. J.K. Zhou, X.H. Niu, Z. Wang, Y.Q. Cui, J.C. Wang, C.H. Yang, Z.Q. Huo, R. Wang, Colloids Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2019.124293

    Article  Google Scholar 

  17. J. C. Chen, P. J. Tzeng, S. C. Chen, C. Y. Wu, C. C. Chen, Y. F. Hsin, J. H. Lau, Y. F. Hsu, S. H. Shen, S. C. Liao, C. H. Ho, C. H. Lin, T. K. Ku and M. J. Kao. 2011 Ieee 61st Electronic Components and Technology Conference (ectc) (Lake Buena Vista, FL, USA) (2011).

  18. Q.P. Zheng, R. Wang, T.X. Wu, B. Liu, S. Wang, ECS J. Solid State Sci. Technol. (2022). https://doi.org/10.1149/2162-8777/ac6d71

    Article  Google Scholar 

  19. V.R.K. Gorantla, E. Matijevic, S.V. Babu, Chem. Mater. 17, 2076–2080 (2005)

    Article  CAS  Google Scholar 

  20. S. Jang, H. Jeong, M. Yuh, I. Park, J. Park, Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 155–159 (2016). https://doi.org/10.1007/s40684-016-0019-1

    Article  Google Scholar 

  21. X.G. Guo, S. Yuan, Y.J. Gou, X.L. Wang, J. Guo, Z.J. Jin, R.K. Kang, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145262

    Article  Google Scholar 

  22. P. Zhang, G.M. Chen, Z.F. Ni, Y.G. Wang, K. Teng, S.H. Qian, D. Bian, Y.W. Zhao, Tribol. Lett (2021). https://doi.org/10.1007/s11249-021-01468-0

    Article  Google Scholar 

  23. Y.N. Prasad, S. Ramanathan, Electrochim. Acta 52, 6353–6358 (2007). https://doi.org/10.1016/j.electacta.2007.04.044

    Article  CAS  Google Scholar 

  24. Q. Wang, D. Yin, B.H. Gao, S.Y. Tian, X.Q. Sun, M.R. Liu, S.H. Zhang, B.M. Tan, Colloids Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2019.124286

    Article  Google Scholar 

  25. J.K. Zhou, X.H. Niu, C.H. Yang, Z.Q. Huo, Y.N. Lu, Z. Wang, Y.Q. Cui, R. Wang, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.147109

    Article  Google Scholar 

  26. T.D. Ma, S.H. Zhang, Y. Xu, B.M. Tan, W. Li, J.B. Ji, L. Guo, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.117307

    Article  Google Scholar 

  27. U.B. Patri, S. Aksu, S.V. Babu, J. Electrochem. Soc. 153, G650–G659 (2006). https://doi.org/10.1149/1.2199307

    Article  CAS  Google Scholar 

  28. B.K. Klug, C.M. Pettit, S. Pandija, S.V. Babu, D. Roy, J. Appl. Electrochem. 38, 1347–1356 (2008). https://doi.org/10.1007/s10800-008-9570-y

    Article  CAS  Google Scholar 

  29. S.E. Rock, D.J. Crain, J.P. Zheng, C.M. Pettit, D. Roy, Mater. Chem. Phys. 129(3), 1159–1170 (2012). https://doi.org/10.1016/j.matchemphys.2011.05.079

    Article  CAS  Google Scholar 

  30. Z.F. Xu, D.Z. Kuang, F.X. Zhang, J. Hengyang Normal Univ. (Nat. Sci.) 23, 60–62 (2002)

    Google Scholar 

  31. H. Bougherra, O. Berradj, A. Adkhis, T. Amrouche, J. Mol. Struct. 1173, 280–290 (2018). https://doi.org/10.1016/j.molstruc.2018.06.088

    Article  CAS  Google Scholar 

  32. M.H. Mir, J.J. Vittal, Inorganica Chimica Acta 403, 97–101 (2013). https://doi.org/10.1016/j.ica.2013.01.002

    Article  CAS  Google Scholar 

  33. J. Song, H.M. Hu, J. Shi, J.W. Ji, J.F. Lu, H.G. Ge, Chin. J. Struct. Chem. 36, 2087–2098 (2017). https://doi.org/10.14102/j.cnki.0254-5861.2011-1633

    Article  CAS  Google Scholar 

  34. M. Kosmulski, Adv. Colloid Interface Sci. 152, 14–25 (2009). https://doi.org/10.1016/j.cis.2009.08.003

    Article  CAS  Google Scholar 

  35. K.W. Chen, Y.L. Wang, J. Electrochem. Soc. 154, H41–H47 (2007). https://doi.org/10.1149/1.2374942

    Article  CAS  Google Scholar 

  36. N. Wang, G.S. Pan, Y. Liu, Microelectron. Eng. 88, 3372–3374 (2011). https://doi.org/10.1016/j.mee.2011.06.029

    Article  CAS  Google Scholar 

  37. X.D. Luan, Y.L. Liu, C.W. Wang, X.H. Niu, J. Wang, W.Q. Zhang, Microelectron. Eng. 160, 5–11 (2016). https://doi.org/10.1016/j.mee.2016.02.044

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation (61504037), Hebei Natural Science Foundation (F2015202267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, R., Liu, B. et al. Effect of DL-alanine as an auxiliary complexing agent in TSV copper film CMP. Journal of Materials Research 38, 3172–3186 (2023). https://doi.org/10.1557/s43578-023-01042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01042-5

Keywords

Navigation