Skip to main content

Advertisement

Log in

Synthesis of g-C3N4/SmFeO3 nanosheets Z-scheme based nanocomposites as efficient visible light photocatalysts for CO2 reduction and Congo red degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this research work, g-C3N4/SmFeO3 nanosheets Z-scheme based nanocomposites were effectively synthesized by employing PVP as a structure-manipulating agent. The comparative investigations proved that g-C3N4 and SmFeO3 nanosheets have exceptional performances and photocatalytic activities as compared to SmFeO3 and g-C3N4 nanoparticles. Based on TEM, HRTEM, XRD, DRS, XPS, PL, FTIR, PEC, BET, and FS spectra it is proved that the coupling of CN nanosheets has effectively enlarged the surface area and enhanced the charge separation of SmFeO3 nanosheets. Compared to pristine SmFeO3 nanosheets, the most active 3CN-SFOS nanocomposite showed ~ 3.5 times improvement in catalytic activities for CO2 reduction and Congo red degradation. Adding more, the scavenger tests confirmed that ⋅O2− and ⋅OH are the most active species for decontamination of Congo red. Finally, our present innovative work will open a novel gateway for the preparation of g-C3N4/SmFeO3 nanosheets based Z-scheme nanocomposites and their applications for CO2 reduction and environment protection.

Graphical abstract

TOC Diagram: Schematic representation of the energy bandgaps, photogenerated charge separation, and photocatalytic activities improvement mechanism over g-C3N4/SmFeO3 nanosheets Z-scheme based nanocomposites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 268, 121725 (2020)

    Article  CAS  Google Scholar 

  2. I. Khan, M. Luo, L. Guo, S. Khan, C. Wang, A. Khan, M. Saeed, S. Zaman, K. Qi, Ql. Liu, Enhanced visible-light photoactivities of porous LaFeO3 by synchronously doping Ni2+ and coupling TS-1 for CO2 reduction and 2,4,6-trinitrophenol degradation. Catal. Sci. Technol. 11, 6793–6803 (2021)

    Article  CAS  Google Scholar 

  3. D. Ljubas, G. Smoljanić, H. Juretić, Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation. J. Environ. Manage. 161, 83–91 (2015)

    Article  CAS  Google Scholar 

  4. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43, 2652–2664 (2022)

    Article  CAS  Google Scholar 

  5. Q. Wang, M. Unno, H. Liu, Organic-inorganic hybrid near-infrared emitting porous polymer for detection and photodegradation of antibiotics. ACS Sustain. Chem. Eng. 10, 7309–7320 (2022)

    Article  CAS  Google Scholar 

  6. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2, 100073 (2023)

    Article  Google Scholar 

  7. Z. Zafar, S. Yi, J. Li, C. Li, Y. Zhu, A. Zada, W. Yao, Z. Liu, X. Yue, Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy Environ. Mater. 5, 68–114 (2022)

    Article  CAS  Google Scholar 

  8. S. Li, M. Cai, C. Wang, Y. Liu, Ta3N5/CdS core–shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr(VI): performance and mechanism insights. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-022-00253-5

  9. I. Khan, M. Luo, S. Khan, H. Asghar, M. Saeed, S. Khan, A. Khan, M. Humayun, L. Guo, B. Shi, Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism. Environ. Res. 207, 112650 (2022)

    Article  CAS  Google Scholar 

  10. M. Cai, Y. Liu, K. Dong, C. Wang, S. Li, A novel S-scheme heterojunction of Cd0.5Zn0.5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: performance, mechanism, and intermediates toxicity evaluation. J. Colloid Interface Sci. 629, 276–286 (2023)

    Article  CAS  Google Scholar 

  11. M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 304, 122401 (2023)

    Article  CAS  Google Scholar 

  12. W. Fan, Z. Sun, J. Wang, J. Zhou, K. Wu, Y. Cheng, A new family of Ce-doped SmFeO3 perovskite for application in symmetrical solid oxide fuel cells. J. Power Sour. 312, 223–233 (2016)

    Article  CAS  Google Scholar 

  13. I. Khan, A. Yuan, A. Khan, S. Khan, S. Khan, S.A. Shah, W. Yaseen, Y. Cui, X. Shen, X. Wang, Efficient Visible-Light Activities of TiO2 decorated and Cr3+incorporated-porous SmFeO3 for CO2 conversion and 4-chlorophenol degradation. Surf. Interfaces 34, 102358 (2022)

    Article  CAS  Google Scholar 

  14. Z. Behzadifard, Z. Shariatinia, M. Jourshabani, Novel visible light driven CuO/SmFeO3 nanocomposite photocatalysts with enhanced photocatalytic activities for degradation of organic pollutants. J. Mol. Liq. 262, 533–548 (2018)

    Article  CAS  Google Scholar 

  15. J. Liu, E. Sheha, S.I. El-Dek, D. Goonetilleke, M. Harguindeguy, N. Sharma, SmFeO3 and Bi-doped SmFeO3 perovskites as an alternative class of electrodes in lithium-ion batteries. Cryst. Eng. Comm. 20, 6165–6172 (2018)

    Article  CAS  Google Scholar 

  16. T. Han, S. Ma, P. Yun, H. Sheng, X. Xu, P. Cao, S. Pei, A. Alhadi, Synthesis and characterization of Ho-doped SmFeO3 nanofibers with enhanced glycol sensing properties. Vacuum 191, 110378 (2021)

    Article  CAS  Google Scholar 

  17. B. Chouchene, T. Gries, L. Balan, G. Medjahdi, R. Schneider, Graphitic carbon nitride/SmFeO3 composite Z-scheme photocatalyst with high visible light activity. Nanotechnology 31, 465704 (2020)

    Article  CAS  Google Scholar 

  18. N.T.T. Truc, T.-D. Pham, M.V. Nguyen, D. Van Thuan, P. Thao, H.T. Trang, D.T. Tran, D.N. Minh, N.T. Hanh, H.M. Ngoc, Advanced NiMoO4/g-C3N4 Z-scheme heterojunction photocatalyst for efficient conversion of CO2 to valuable products. J. Alloy. Compd. 842, 155860 (2020)

    Article  Google Scholar 

  19. B. Han, Y.H. Hu, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4, 285–304 (2016)

    Article  CAS  Google Scholar 

  20. C. Du, Z. Zhang, S. Tan, G. Yu, H. Chen, L. Zhou, L. Yu, Y. Su, Y. Zhang, F. Deng, Construction of Z-scheme g-C3N4/MnO2/GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation. Environ. Res. 200, 111427 (2021)

    Article  CAS  Google Scholar 

  21. K. Qi, W. Lv, I. Khan, S.-Y. Liu, Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin. J. Catal. 41, 114–121 (2020)

    Article  CAS  Google Scholar 

  22. I. Khan, A. Yuan, S. Khan, A. Khan, S. Khan, S.A. Shah, M. Luo, W. Yaseen, X. Shen, M. Yaseen, Graphitic carbon nitride composites with Gold and ZIF-67 nanoparticles as visible-light-promoted catalysts for CO2 conversion and bisphenol A degradation. ACS Appl. Nano Mater. 5, 13404–13416 (2022)

    Article  CAS  Google Scholar 

  23. L.-L. Liu, F. Chen, J.-H. Wu, W.-W. Li, J.-J. Chen, H.-Q. Yu, Fine tuning of phosphorus active sites on gC 3 N 4 nanosheets for enhanced photocatalytic decontamination. J. Mater. Chem. A 9, 10933–10944 (2021)

    Article  CAS  Google Scholar 

  24. Q. Zhang, Y. Peng, Y. Lin, S. Wu, X. Yu, C. Yang, Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chem. Eng. J. 405, 126661 (2021)

    Article  CAS  Google Scholar 

  25. D. Neena, M. Humayun, W. Zuo, C.S. Liu, W. Gao, D.J. Fu, Hierarchical hetero-architectures of in-situ g-C3N4-coupled Fe-doped ZnO micro-flowers with enhanced visible-light photocatalytic activities. Appl. Surf. Sci. 506, 145017 (2020)

    Article  CAS  Google Scholar 

  26. S. Manchala, A. Gandamalla, N.R. Vempuluru, S.M. Venkatakrishnan, V. Shanker, High potential and robust ternary LaFeO3/CdS/carbon quantum dots nanocomposite for photocatalytic H2 evolution under sunlight illumination. J. Colloid Interface Sci. 583, 255–266 (2021)

    Article  CAS  Google Scholar 

  27. Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Core@Shell CsPbBr 3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3, 2656–2662 (2018)

    Article  CAS  Google Scholar 

  28. A. Zada, Y. Qu, S. Ali, N. Sun, H. Lu, R. Yan, X. Zhang, L. Jing, Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. J. Hazard. Mater. 342, 715–723 (2018)

    Article  CAS  Google Scholar 

  29. M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu, H. Guo, Controlled assemble of hollow heterostructured g-C3N4@ CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B 243, 566–575 (2019)

    Article  CAS  Google Scholar 

  30. K. Zhao, I. Khan, K. Qi, Y. Liu, A. Khataee, Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants. Mater. Chem. Phys. 253, 123322 (2020)

    Article  CAS  Google Scholar 

  31. M. Xiao, Z. Wang, B. Luo, S. Wang, L. Wang, Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Appl. Catal. B 246, 195–201 (2019)

    Article  CAS  Google Scholar 

  32. M. Saeed, I. Khan, M. Adeel, N. Akram, M. Muneer, Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New J. Chem. 46, 2224–2231 (2022)

    Article  CAS  Google Scholar 

  33. S.A. Shah, I. Khan, A. Yuan, MoS2 as a co-catalyst for photocatalytic hydrogen production: a mini review. Molecules 27, 3289 (2022)

    Article  CAS  Google Scholar 

  34. I. Khan, C. Wang, S. Khan, J. Chen, A. Khan, S. Ali Shah, AihuaYuan, S. Khan, M.K. Butt, H. Asghar, Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: an exceptional approach towards environmental remediation, Chin. J. Chem. Eng. 56, 215–224 (2022)

  35. M. Adeel, M. Saeed, I. Khan, M. Muneer, N. Akram, Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 6, 1426–1435 (2021)

    Article  CAS  Google Scholar 

  36. O.O. Akintunde, L. Yu, J. Hu, M.G. Kibria, G. Achari, Visible-light driven photocatalytic degradation of 4-chlorophenol using graphitic carbon nitride-based nanocomposites. Catalysts 12, 281 (2022)

    Article  CAS  Google Scholar 

  37. Y. Wu, H. Wang, W. Tu, Y. Liu, Y.Z. Tan, X. Yuan, J.W. Chew, Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid pn heterojunction interfacial effect. J. Hazard. Mater. 347, 412–422 (2018)

    Article  CAS  Google Scholar 

  38. N.T.T. Truc, T.-D. Pham, D. Van Thuan, D.T. Tran, M.V. Nguyen, N.M. Dang, H.T. Trang, Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photocatalytic decomposition of VOCs in aerosol under visible light. J. Alloy. Compd. 798, 12–18 (2019)

    Article  Google Scholar 

  39. N.D.M. Humayun, D. Bhattacharyya, D. Fu, Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities. J. Photochem. Photobiol. A: Chem. 396, 112515 (2020)

    Article  Google Scholar 

  40. S. Chen, Z. Mu, R. Yan, X. Zhang, I. Khan, Z. Li, N. Sun, Q. Zhang, L. Jing, Improved photoactivities for CO2 conversion and phenol degradation of α-Fe2O3 nanoparticles by co-coupling nano-sized BiPO4 and CuO to modulate electrons. J. Alloy. Compd. 800, 231–239 (2019)

    Article  CAS  Google Scholar 

  41. Z. Xiong, Y. Zhang, Construction of novel in-situ photo-Fenton system based on modified g-C3N4 composite photocatalyst. Environ. Res. 195, 110785 (2021)

    Article  CAS  Google Scholar 

  42. R. Sun, Y. Wang, Z. Zhang, Y. Qu, Z. Li, B. Li, H. Wu, X. Hua, S. Zhang, F. Zhang, Ultrathin phosphate-modulated zinc phthalocyanine/perylenete diimide supermolecule Z-scheme heterojunctions as efficiently wide visible-light photocatalysts for CO2 conversion. Chem. Eng. J. 426, 131266 (2021)

    Article  CAS  Google Scholar 

  43. K. Zhang, X. Tan, P. Xiang, B. Li, J. Li, Y. Ren, Y. Zhu, Y. Liu, W. Yan, X. Chen, H. Han, Modifying the photoelectric performance of SnO2 via D-arginine monohydrochloride for high-performance perovskite solar cells. J. Alloy. Compd. 946, 169361 (2023)

    Article  CAS  Google Scholar 

  44. A. Zada, N. Ali, F. Subhan, N. Anwar, M.I. Ali Shah, M. Ateeq, Z. Hussain, K. Zaman, M. Khan, Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light. Prog. Natl. Sci.: Mater. Int. 29, 138–144 (2019)

    Article  CAS  Google Scholar 

  45. A. Zada, M. Khan, M.A. Khan, Q.S. Khan, A. Habibi-Yangjeh, A. Dang, M. Maqbool, Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 195, 110742 (2021)

    Article  CAS  Google Scholar 

  46. W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12, 442–462 (2019)

    Article  CAS  Google Scholar 

  47. S.A. Shah, L. Xu, R. Sayyar, T. Bian, Z. Liu, A. Yuan, X. Shen, I. Khan, A.A. Tahir, H. Ullah, Growth of MoS2 nanosheets on M@ N-doped carbon particles (M= Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction. Chem. Eng. J. 428, 132126 (2022)

    Article  Google Scholar 

  48. Z. Sun, J.M.T.A. Fischer, Q. Li, J. Hu, Q. Tang, H. Wang, Z. Wu, M. Hankel, D.J. Searles, L. Wang, Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Appl. Catal. B 216, 146–155 (2017)

    Article  CAS  Google Scholar 

  49. N. Khalid, A. Hammad, M. Tahir, M. Rafique, T. Iqbal, G. Nabi, M. Hussain, Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 45, 21430–21435 (2019)

    Article  CAS  Google Scholar 

  50. S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 428, 131158 (2022)

    Article  CAS  Google Scholar 

  51. M. Cai, C. Wang, Y. Liu, R. Yan, S. Li, Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep. Purif. Technol. 300, 121892 (2022)

    Article  CAS  Google Scholar 

  52. D. Zhang, H. Tang, Y. Wang, K. Wu, H. Huang, G. Tang, J. Yang, Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light. Appl. Surf. Sci. 319, 306–311 (2014)

    Article  CAS  Google Scholar 

  53. T. Zhang, Q. Yin, M. Zhang, S. Zhang, Y. Shao, L. Fang, Q. Yan, X. Sun, Enhanced photocatalytic activity of AgBr photocatalyst via constructing heterogeneous junctions with reduced graphene. J. Mater. Sci.: Mater. Electron. 32, 15331–15342 (2021)

    CAS  Google Scholar 

  54. I. Khan, M. Luo, L. Guo, S. Khan, S.A. Shah, I. Khan, A. Khan, C. Wang, B. Ai, S. Zaman, Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation. Appl. Catal. A 629, 118418 (2022)

    Article  CAS  Google Scholar 

  55. I. Khan, N. Sun, Z. Zhang, Z. Li, M. Humayun, S. Ali, Y. Qu, L. Jing, Improved visible-light photoactivities of porous LaFeO3 by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catal. Sci. Technol. 9, 3149–3157 (2019)

    Article  CAS  Google Scholar 

  56. W. Ali, X. Zhang, X. Zhang, S. Ali, L. Zhao, S. Shaheen, L. Jing, Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2, 4-dichlorophenol degradation. Mater. Res. Bull. 122, 110676 (2020)

    Article  CAS  Google Scholar 

  57. I. Khan, N. Sun, Y. Wang, Z. Li, Y. Qu, L. Jing, Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2, 4-dichlorophenol degradation. Mater. Res. Bull. 127, 110857 (2020)

    Article  CAS  Google Scholar 

  58. N.D.M. Humayun, D. Lu, V.B. Mohan, D. Fu, W. Gao, Cadmium and iron decorated ZnO nanoparticles: Effects on physical, electrochemical and antibacterial performance. Ceram. Int. 46, 5278–5288 (2020)

    Article  Google Scholar 

  59. M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir, C. Wang, W. Luo, Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett. 13, 209 (2021)

    Article  CAS  Google Scholar 

  60. I. Khan, S. Khan, J. Chen, S.A. Shah, A. Yuan, Biological inspired green synthesis of TiO2 coupled g-C3N4 nanocomposites and its improved activities for sulfadiazine and bisphenol a degradation, J. Clust. Sci. 34, 1453–1464 (2022)

Download references

Acknowledgments

The authors are grateful for financial support from a research start-up fund for the introduction of young talent at Jiangsu University of Science and Technology (Grant No. 1112932205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iltaf Khan or Muhammad Saeed.

Ethics declarations

Conflict of interest

The authors declares no conflict of interest.

Ethical approval

The submitted manuscript is original work done by the authors and performed in our laboratory. We declare that the manuscript is not considered for publication anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, H., Khan, I., Saeed, M. et al. Synthesis of g-C3N4/SmFeO3 nanosheets Z-scheme based nanocomposites as efficient visible light photocatalysts for CO2 reduction and Congo red degradation. Journal of Materials Research 38, 2986–2997 (2023). https://doi.org/10.1557/s43578-023-01034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01034-5

Navigation