Skip to main content

Advertisement

Log in

High-performance aqueous asymmetric supercapacitors based on K+ and Na+ co-preinserted δ-MnO2 nanocrystals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Layed δ-MnO2 nanocrystals are fabricated through a facile precipitation reaction at ambient conditions with Na2SO3 as reductant. The high content of co-preinserted K+ and Na+ and water content in δ-MnO2 are responsible for the enhanced electrochemical performance. Specifically, δ-MnO2 delivers a high specific capacitance of 303.7 F g−1 at 0.5 A g−1, together with steady cycle property. Moreover, an asymmetric supercapacitor (ASC) is fabricated with δ-MnO2 as the positive electrode and reduced graphene oxide (RGO) as the negative electrode. The device displays a large energy density of 53.2 Wh kg−1 at 250 W kg−1 with a potential window of 0–2.0 V in aqueous electrolyte, and 91.1% capacitance retention after 5000 cycles. These results can well demonstrate the potential application of layed δ-MnO2 nanocrystals as the active electrode material in energy storage systems.

Graphical abstract

Layed δ-MnO2 nanocrystals are fabricated through a simple precipitation reaction at ambient condition using a new reductant Na2SO3. The high content of co-preinserted K+ and Na+ ions and water in δ-MnO2 are responsible for the enhanced electrochemical performance. δ-MnO2//RGO asymmetric supercapacitor exhibits a high energy density in aqueous electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The corresponding author can provide the data from the paper upon reasonable request.

References

  1. S. Bag, C.R. Raj, Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 4, 587–595 (2016)

    Article  CAS  Google Scholar 

  2. S. Li, C. Yu, J. Yang, C. Zhao, M. Zhang, H. Huang, Z. Liu, W. Guo, J. Qiu, A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 10, 1958–1965 (2017)

    Article  CAS  Google Scholar 

  3. W. Guo, C. Yu, S. Li, J. Yang, Z. Liu, C. Zhao, H. Huang, M. Zhang, X. Han, Y. Niu, J. Qiu, High-stacking-density, superior-roughness LDH bridged with vertically aligned graphene for high-performance asymmetric supercapacitors. Small 13, 1701288 (2017)

    Article  Google Scholar 

  4. W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 29, 1703463 (2017)

    Article  Google Scholar 

  5. S. Zheng, Z. Li, Z.S. Wu, Y. Dong, F. Zhou, S. Wang, Q. Fu, C. Sun, L. Guo, X. Bao, High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 11, 4009–4016 (2017)

    Article  CAS  Google Scholar 

  6. W.L. Song, X. Li, L.Z. Fan, Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Mater. 3, 113–122 (2016)

    Article  Google Scholar 

  7. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017)

    Article  CAS  Google Scholar 

  8. L. Zuo, W. Fan, Y. Zhang, Y. Huang, W. Gao, T. Liu, Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Nanoscale 9, 4445–4455 (2017)

    Article  CAS  Google Scholar 

  9. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  10. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  11. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)

    Article  CAS  Google Scholar 

  12. N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 1700804 (2017)

    Article  Google Scholar 

  13. L. Sheng, L. Jiang, T. Wei, Z. Fan, High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures. Small 12, 5217–5227 (2016)

    Article  CAS  Google Scholar 

  14. Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 3408–3416 (2013)

    Article  CAS  Google Scholar 

  15. Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. Mater. Chem. C 1, 1245–1251 (2013)

    Article  CAS  Google Scholar 

  16. X. Zhao, L. Zhang, S. Murali, M.D. Stoller, Q. Zhang, Y. Zhu, R.S. Ruoff, Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6, 5404–5412 (2012)

    Article  CAS  Google Scholar 

  17. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 14020–14027 (2009)

    Article  CAS  Google Scholar 

  18. H. Kim, B.N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sour. 104, 52–61 (2002)

    Article  CAS  Google Scholar 

  19. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)

    Article  CAS  Google Scholar 

  20. J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. (2008). https://doi.org/10.1039/b800264a

    Article  Google Scholar 

  21. L. Cao, M. Lu, H.L. Li, Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J. Electrochem. Soc. 152, A871–A875 (2005)

    Article  CAS  Google Scholar 

  22. S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem. Commun. 10, 1724–1727 (2008)

    Article  CAS  Google Scholar 

  23. Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010)

    Article  CAS  Google Scholar 

  24. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)

    Article  CAS  Google Scholar 

  25. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  CAS  Google Scholar 

  26. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)

    Article  CAS  Google Scholar 

  27. D. Yan, H. Zhang, S. Li, G. Zhu, Z. Wang, H. Xu, A. Yu, Formation of ultrafine three-dimensional hierarchical birnessite-type MnO2 nanoflowers for supercapacitor. J. Alloys Compd. 607, 245–250 (2014)

    Article  CAS  Google Scholar 

  28. D. Yan, S. Li, G. Zhu, Z. Wang, H. Xu, A. Yu, Synthesis and pseudocapacitive behaviors of biomorphic mesoporous tubular MnO2 templated from cotton. Mater. Lett. 95, 164–167 (2013)

    Article  CAS  Google Scholar 

  29. S. Chen, M. Zhang, X. Ma, L. Li, X. Zhou, Z. Zhang, Asymmetric supercapacitors by integrating high content Na+/K+-inserted MnO2 nanosheets and layered Ti3C2Tx paper. Electrochim. Acta 332, 135497 (2020)

    Article  CAS  Google Scholar 

  30. V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207–20214 (2005)

    Article  CAS  Google Scholar 

  31. H. Zhang, Y. Wang, C. Liu, H. Jiang, Influence of surfactant CTAB on the electrochemical performance of manganese dioxide used as supercapacitor electrode material. J. Alloys Compd. 517, 1–8 (2012)

    Article  CAS  Google Scholar 

  32. S. Sun, P. Wang, Q. Wu, S. Wang, S. Fang, Template-free synthesis of mesoporous MnO2 under ultrasound irradiation for supercapacitor electrode. Mater. Lett. 137, 206–209 (2014)

    Article  CAS  Google Scholar 

  33. J. Ni, W. Lu, L. Zhang, B. Yue, X. Shang, Y. Lv, Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J. Phys. Chem. C 113, 54–60 (2009)

    Article  CAS  Google Scholar 

  34. M. Toupin, T. Brousse, D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002)

    Article  CAS  Google Scholar 

  35. Y.U. Jeong, A. Manthiram, Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 149, A1419–A1422 (2002)

    Article  CAS  Google Scholar 

  36. Z. Teng, X. Lu, F. Wang, X. Hui, Y. Tong, MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsically and extrinsically modification. Nanoscale Horiz. 1, 109–124 (2016)

    Article  Google Scholar 

  37. Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li, Y. Shen, L. Yuan, X. Hu, X. Dai, Y. Huang, High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014)

    Article  CAS  Google Scholar 

  38. Y.G. Wang, Y.Y. Xia, A new concept hybrid electrochemical surpercapacitor: carbon/LiMn2O4 aqueous system. Electrochem. Commun. 7, 1138–1142 (2005)

    Article  CAS  Google Scholar 

  39. N. Jabeen, Q. Xia, S.V. Savilov, S.M. Aldoshin, Y. Yu, H. Xia, Enhanced pseudocapacitive performance of alpha-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 8, 33732–33740 (2016)

    Article  CAS  Google Scholar 

  40. X.F. Lu, Z.X. Huang, Y.X. Tong, G.R. Li, Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem. Sci. 7, 510–517 (2016)

    Article  CAS  Google Scholar 

  41. M.J. Young, M. Neuber, A.C. Cavanagh, H. Sun, C.B. Musgrave, S.M. George, Sodium charge storage in thin films of MnO2 derived by electrochemical oxidation of MnO atomic layer deposition films. J. Electrochem. Soc. 162, A2753–A2761 (2015)

    Article  CAS  Google Scholar 

  42. X. Zheng, J. Cai, Y. Cao, L. Shen, L. Jiang, Construction of cross-linked δ-MnO2 with ultrathin structure for the oxidation of H2S: Structure-activity relationship and kinetics study. Appl. Catal. B Environ. 297, 120402 (2021)

    Article  CAS  Google Scholar 

  43. S. Bag, C.R. Raj, Facile shape-controlled growth of hierarchical mesoporous δ-MnO2 for the development of asymmetric supercapacitors. J. Mater. Chem. A 4, 8384–8394 (2016)

    Article  CAS  Google Scholar 

  44. Y. Sun, L. Wang, Y. Liu, Y. Ren, Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly. Small 11, 300–305 (2015)

    Article  CAS  Google Scholar 

  45. T. Xiong, T.L. Tan, L. Li, W.S.V. Lee, J.M. Xue, Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Adv. Energy Mater. 8(14), 1702630 (2018)

    Article  Google Scholar 

  46. J. Wang, J.G. Wang, H. Liu, Z. You, Z. Li, F. Kang, B. Wei, A highly flexible and lightweight MnO2/graphene membrane for superior Zinc-ion batteries. Adv. Funct. Mater. 31, 2007397 (2021)

    Article  CAS  Google Scholar 

  47. Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H.J. Fan, F. Kang, C.P. Wong, C. Yang, A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ. Sci. 10, 941–949 (2017)

    Article  CAS  Google Scholar 

  48. C.C. Hu, C.C. Wang, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc. 150, A1079–A1084 (2003)

    Article  CAS  Google Scholar 

  49. D. Banerjee, H.W. Nesbitt, XPS study of reductive dissolution of birnessite by oxalate: rates and mechanistic aspects of dissolution and redox processes. Geochim. Cosmochim. Ac. 63, 3025–3038 (1999)

    Article  CAS  Google Scholar 

  50. D. Banerjee, H.W. Nesbitt, XPS study of dissolution of birnessite by humate with constraints on reaction mechanism. Geochim. Cosmochim. Ac. 65, 1703–1714 (2001)

    Article  CAS  Google Scholar 

  51. J.N. Hao, Y.Y. Zhong, Y.Q. Liao, D. Shu, Z.X. Kang, X.P. Zou, C. He, S.T. Guo, Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochim. Acta 167, 412–420 (2015)

    Article  CAS  Google Scholar 

  52. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng, Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J. Power Sour. 180, 664–670 (2008)

    Article  CAS  Google Scholar 

  53. Z. Song, W. Liu, M. Zhao, Y. Zhang, G. Liu, C. Yu, J. Qiu, A facile template-free synthesis of α-MnO2 nanorods for supercapacitor. J. Alloys Compd. 560, 151–155 (2013)

    Article  CAS  Google Scholar 

  54. Q.J. Le, T. Wang, D.N.H. Tran, F. Dong, Y.X. Zhang, D. Losic, Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 10856–10865 (2017)

    Article  CAS  Google Scholar 

  55. A. Zolfaghari, F. Ataherian, M. Ghaemi, A. Gholami, Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim. Acta 52, 2806–2814 (2007)

    Article  CAS  Google Scholar 

  56. Y. Qiu, Y. Zhao, X. Yang, W. Li, Z. Wei, J. Xiao, S.F. Leung, Q. Lin, H. Wu, Y. Zhang, Z. Fan, S. Yang, Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale 6, 3626–3631 (2014)

    Article  CAS  Google Scholar 

  57. Y. Song, T. Liu, B. Yao, M. Li, T. Kou, Z.H. Huang, D.Y. Feng, F. Wang, Y. Tong, X.X. Liu, Y. Li, Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017)

    Article  CAS  Google Scholar 

  58. H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 4, 2801–2810 (2012)

    Article  CAS  Google Scholar 

  59. H. Jiang, C. Li, T. Sun, J. Ma, A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4, 807–812 (2012)

    Article  CAS  Google Scholar 

  60. T. Tomko, R. Rajagopalan, M. Lanagan, H.C. Foley, High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO2 electrodes in aqueous electrolytes. J. Power Sour. 196, 2380–2386 (2011)

    Article  CAS  Google Scholar 

  61. S.J. Cho, K.H. Choi, J.T. Yoo, J.H. Kim, Y.H. Lee, S.J. Chun, S.B. Park, D.H. Choi, Q. Wu, S.Y. Lee, S.Y. Lee, Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 25, 6029–6040 (2015)

    Article  CAS  Google Scholar 

  62. X.N. Tang, C.Z. Liu, X.R. Chen, Y.Q. Deng, X.H. Chen, J.J. Shao, Q.H. Yang, Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon 146, 147–154 (2019)

    Article  CAS  Google Scholar 

  63. Q. Meng, R. Zhao, P. Cao, Stabilization of Zn anode via a multifunctional cysteine additive. Chem. Eng. J. 447, 137471 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Guizhou Provincial Basic Research Program (Natural Science) (Grant No. QKHJC-ZK[2023]YB048), National Natural Science Foundation of China (Grant No. 22065005), and Introduction of Talent Research Fund of Guizhou University (Grant No. 202052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoning Tang or An Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3596 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Xia, S., Luo, Q. et al. High-performance aqueous asymmetric supercapacitors based on K+ and Na+ co-preinserted δ-MnO2 nanocrystals. Journal of Materials Research 38, 2998–3008 (2023). https://doi.org/10.1557/s43578-023-01018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01018-5

Keywords

Navigation