Skip to main content
Log in

The role of milling conditions on an ultrasonic-assisted ball milling exfoliation approach for fabrication of few layer MoS2 and WS2 large size sheets

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Here, an ultrasonic-assisted ball milling exfoliation method to obtain 2D MoS2 and WS2 sheets was developed. We investigated the effect of rotational speed, milling time, and wet or dry milling agent. The yield, dimensions, and structural characteristics of the exfoliated MoS2 and WS2 sheets were investigated by different characterization techniques. To investigate the effect of ball rotation speed, samples were mixed with NaCl and milled at 150 rpm, 300 rpm, and 450 rpm for 2 h. Samples milled for 1 h, 2 h, and 4 h at 450 rpm were also prepared. Finally, the effect of the milling agent was tested milling the samples in Isopropanol. The best condition found was 2 h at 450 rpm in NaCl dry medium, with sheets of 1–4 layers with lateral size in the order of microns and showing high stable dispersions. Exfoliation yield with the best milling condition was 96% and 43% for MoS2 and WS2, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. J. Xia, J. Yan, Z.X. Shen, Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem 4, 1–19 (2017)

    Article  CAS  Google Scholar 

  2. C. Cong, J. Shang, Y. Wang, T. Yu, Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018)

    Article  Google Scholar 

  3. G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones, Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 096501 (2017)

    Article  Google Scholar 

  4. K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017)

    Article  CAS  Google Scholar 

  5. P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)

    Article  CAS  Google Scholar 

  6. H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 47, 4285–4294 (2018)

    Article  Google Scholar 

  7. S. Boandoh, S.H. Choi, J.H. Park, S.Y. Park, S. Bang, M.S. Jeong, J.S. Lee, H.J. Kim, W. Yang, J.Y. Choi, S.M. Kim, K.K. Kim, A novel and facile route to synthesize atomic-layered mos2 film for large-area electronics. Small 13, 701306 (2017)

    Article  Google Scholar 

  8. R. Bissessur, W. White, Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater. Chem. Phys. 99, 214–219 (2006)

    Article  CAS  Google Scholar 

  9. X.L. Li, W.P. Han, J.B. Wu, X.F. Qiao, J. Zhang, P.H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27, 1604468 (2017)

    Article  Google Scholar 

  10. B. Adilbekova, Y. Lin, E. Yengel, H. Faber, G. Harrison, Y. Firdaus, A. El-Labban, D.H. Anjum, V. Tung, T.D. Anthopoulos, Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. J. Mater. Chem. C 8, 5259–5264 (2020)

    Article  CAS  Google Scholar 

  11. F.I. Alzakia, S.C. Tan, Liquid-exfoliated 2D materials for optoelectronic applications. Adv. Sci. 8, 2003864 (2021)

    Article  CAS  Google Scholar 

  12. S.J. An, Y.H. Kim, C. Lee, D.Y. Park, M.S. Jeong, Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser. Sci. Rep. 8, 12957 (2018)

    Article  Google Scholar 

  13. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  Google Scholar 

  14. E.D. Grayfer, M.N. Kozlova, V.E. Fedorov, Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Colloid Interface Sci. 245, 40–61 (2017)

    Article  CAS  Google Scholar 

  15. R. Yang, L. Mei, Q. Zhang, Y. Fan, H.S. Shin, D. Voiry, Z. Zeng, High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022)

    Article  CAS  Google Scholar 

  16. Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan, F. Wang, Z. Wang, J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019)

    Article  CAS  Google Scholar 

  17. S.V. Mandyam, H.M. Kim, M. Drndić, Large area few-layer TMD film growths and their applications. J. Phys. Mater. 3, 024008 (2020)

    Article  CAS  Google Scholar 

  18. F. Liu, Mechanical exfoliation of large area 2D materials from vdW crystals. Prog. Surf. Sci. 96, 100626 (2021)

    Article  CAS  Google Scholar 

  19. X. Lin, J. Wang, Acta Chim. Sin. 75, 979 (2017)

    Article  CAS  Google Scholar 

  20. M. Esfandiari, S. Mohajerzadeh, Formation of large area WS2 nanosheets using an oxygen-plasma assisted exfoliation suitable for optical devices. Nanotechnology 30, 425204 (2019)

    Article  CAS  Google Scholar 

  21. B. Zou, Z. Wu, Y. Zhou, Y. Zhou, J. Wang, L. Zhang, F. Cao, H. Sun, Spectroscopic ellipsometry investigation of Au-assisted exfoliated large-area single-crystalline monolayer MoS2. Phys. Status Solidi 15, 2100385 (2021)

    CAS  Google Scholar 

  22. Y. Li, X. Yin, X. Huang, X. Liu, W. Wu, Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction. Int. J. Hydrogen Energy 45, 16489–16499 (2020)

    Article  CAS  Google Scholar 

  23. C. Liang, X. Sui, A. Wang, J. Chang, W. Wang, Z. Chen, W. Jiang, Y. Ma, J. Zhang, X. Liu, Y. Zhang, Controlled production of MoS2 full-scale nanosheets and their strong size effects. Adv. Mater. Interfaces 7, 2001130 (2020)

    Article  CAS  Google Scholar 

  24. D. Shi, M. Yang, B. Chang, Z. Ai, K. Zhang, Y. Shao, S. Wang, Y. Wu, X. Hao, Ultrasonic-ball milling: a novel strategy to prepare large-size ultrathin 2D materials. Small 16, 1906734 (2020)

    Article  CAS  Google Scholar 

  25. A. Tayyebi, N. Ogino, T. Hayashi, N. Komatsu, Size-controlled MoS2 nanosheet through ball milling exfoliation: parameter optimization, structural characterization and electrocatalytic application. Nanotechnology 31, 075704 (2020)

    Article  CAS  Google Scholar 

  26. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science (80-) 331, 568–571 (2011)

    Article  CAS  Google Scholar 

  27. V. Štengl, J. Henych, Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale 5, 3387–3394 (2013)

    Article  Google Scholar 

  28. H. Mori, H. Mio, J. Kano, F. Saito, Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate. Powder Technol. 143, 230–239 (2004)

    Article  Google Scholar 

  29. J. Kano, N. Chujo, F. Saito, A method for simulating the three-dimensional motion of balls under the presence of a powder sample in a tumbling ball mill. Adv. Powder Technol. 8, 39–51 (1997)

    Article  Google Scholar 

  30. V. Petkov, S.J.L. Billinge, P. Larson, S.D. Mahanti, T. Vogt, K.K. Rangan, M.G. Kanatzidis, Structure of nanocrystalline materials using atomic pair distribution function analysis: study of LiMoS2. Phys. Rev. B 65, 092105 (2002)

    Article  Google Scholar 

  31. W.J. Schutte, J.L. De Boer, F. Jellinek, Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987)

    Article  CAS  Google Scholar 

  32. G. Liu, N. Komatsu, Readily available “stock solid” of MoS2 and WS2 nanosheets through solid-phase exfoliation for highly concentrated dispersions in water. ChemNanoMat 2, 500–503 (2016)

    Article  CAS  Google Scholar 

  33. K. Krishnamoorthy, P. Pazhamalai, G.K. Veerasubramani, S.J. Kim, Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. J. Power Sources 321, 112–119 (2016)

    Article  CAS  Google Scholar 

  34. H. Shalchian, J.V. Khaki, A. Babakhani, G. Taglieri, I. De Michelis, V. Daniele, F. Veglio, On the mechanism of molybdenite exfoliation during mechanical milling. Ceram. Int. 43, 12957–12967 (2017)

    Article  CAS  Google Scholar 

  35. H. Lin, J. Wang, Q. Luo, H. Peng, C. Luo, R. Qi, R. Huang, J. Travas-Sejdic, C.G. Duan, Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J. Alloys Compd. 699, 222–229 (2017)

    Article  CAS  Google Scholar 

  36. A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012)

    Article  Google Scholar 

  37. M.S. Loeian, D.A. Ziolkowska, F. Khosravi, J.B. Jasinski, B. Panchapakesan, Exfoliated WS2-Nafion composite based electromechanical actuators. Sci. Rep. 7, 14599 (2017)

    Article  Google Scholar 

  38. C. Kim, T.P. Nguyen, Q. Van Le, J.M. Jeon, H.W. Jang, and S.Y. Kim, Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 25(28), 4512–4519 (2015)

    Article  CAS  Google Scholar 

  39. N. Saha, A. Sarkar, A.B. Ghosh, A.K. Dutta, G.R. Bhadu, P. Paul, B. Adhikary, Highly active spherical amorphous MoS2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 5, 4512–4519 (2015)

    Article  Google Scholar 

  40. N. Chaudhary, M. Khanuja, Abid, and S.S. Islam: Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens. Actuators A 277, 190–198 (2018).

  41. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)

    Article  CAS  Google Scholar 

  42. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  CAS  Google Scholar 

  43. G.Q. Han, Y.R. Liu, W.H. Hu, B. Dong, X. Li, Y.M. Chai, Y.Q. Liu, C.G. Liu, WS2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction. Mater. Chem. Phys. 167, 271–277 (2015)

    Article  CAS  Google Scholar 

  44. D. Krishnamoorthy, A. Prakasam, Graphene hybridized with tungsten disulfide (WS2) based heterojunctions photoanode materials for high performance dye sensitized solar cell device (DSSCs) applications. J. Clust. Sci. 32, 621–630 (2021)

    Article  CAS  Google Scholar 

  45. B. Schönfeld, J.J. Huang, S.C. Moss, Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2. Acta Crystallogr. Sect. B 39, 404–407 (1983)

    Article  Google Scholar 

  46. B.F. Mentzen, M.J. Sienko, Preparation and X-ray study of mixed-anion tungsten dichalcogenides. Inorg. Chem. 15, 2198–2202 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant Nos. 408265/2016-7 and 311421/2021-0 and 406725/2021-7) and from Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG (APQ-01929-21). We are also grateful to Araucaria Foundation by the productivity scholarship grant 068/2019 (Garcia-Basabe, Y.) We are also grateful to CEM of Federal University of ABC for HRTEM measurements.

Funding

Funding was provided by CNPq (408265/2016-7, 406725/2021-7).

Author information

Authors and Affiliations

Authors

Contributions

LMD, SGH, JJSA, and MSC: methodology, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. RORRdC: supervision, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. DRGL supervision, resources, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization YGB: conceptualization, resources, writing—original draft, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Yunier Garcia-Basabe.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4836 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Basabe, Y., Daminelli, L.M., Hernández, S.G. et al. The role of milling conditions on an ultrasonic-assisted ball milling exfoliation approach for fabrication of few layer MoS2 and WS2 large size sheets. Journal of Materials Research 38, 2958–2968 (2023). https://doi.org/10.1557/s43578-023-01013-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01013-w

Keywords

Navigation