Skip to main content
Log in

Molecular dynamics simulations for nanoindentation response of metastable high entropy alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase transformation mechanism in stress-induced metastable high entropy alloy (HEA) is unclear. In this paper, the nanoindentation deformation behavior of martensitic high entropy alloy metals was investigated using molecular dynamics simulations to study the effects of temperature and crystal orientation on the phase transformation and mechanical response. It was found that the primary behavior of plastic deformation in Body-centered cubic (BCC)-type Ta metals is the emission of dislocations. At the same time, it is the growth of phase transition structures of metastable HEAs. Temperature can increase the ratio of phase transition atoms in metastable HEAs. Spherical nano-indenter realizes Polycrystalline phase transition structures in metastable HEAs. This work provides insight into the effects of temperature and crystal orientation on the mechanical properties of HEAs under nanoindentation and provides guidance for understanding the mechanical response of other monocrystalline materials with phase transformation properties.

Graphical Abstract

Nanoindentation simulation models, mechanical response curves, and nanoindentation results for pure metal Ta and high entropy alloys

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5
Figure. 6
Figure. 7
Figure. 8
Figure. 9
Figure. 10

Similar content being viewed by others

References

  1. S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120(16), 164902 (2016). https://doi.org/10.1063/1.4966659

    Article  CAS  Google Scholar 

  2. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33(19), 3092 (2018). https://doi.org/10.1557/jmr.2018.153

    Article  CAS  Google Scholar 

  3. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Met. Mater. Int. 26(8), 1099 (2019). https://doi.org/10.1007/s12540-019-00565-z

    Article  Google Scholar 

  4. S. Wang, M. Wu, D. Shu, G. Zhu, D. Wang, B. Sun, Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater. 201, 517 (2020). https://doi.org/10.1016/j.actamat.2020.10.044

    Article  CAS  Google Scholar 

  5. L. Lilensten, J.-P. Couzinié, J. Bourgon, L. Perrière, G. Dirras, F. Prima, I. Guillot, Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5(2), 110 (2016). https://doi.org/10.1080/21663831.2016.1221861

    Article  CAS  Google Scholar 

  6. L. Ya-zhou, L. Yun, S. Shuo, S. Yan-yu, H. Sheng-peng, S. Xiao-guo, G. Ning, L. Wei-min, Molecular dynamics simulation of phase transition and crack propagation in metastable high entropy alloy. Mater. Today Commun. 33, 104642 (2022). https://doi.org/10.1016/j.mtcomm.2022.104642

    Article  CAS  Google Scholar 

  7. J. Varillas, J. Očenášek, J. Torner, J. Alcalá, Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces. Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2021.117122

    Article  Google Scholar 

  8. C.A. Schuh, Nanoindentation studies of materials. Mater. Today. 9(5), 32 (2006). https://doi.org/10.1016/s1369-7021(06)71495-x

    Article  CAS  Google Scholar 

  9. M.S. Talaei, N. Nouri, S. Ziaei-Rad, Grain boundary effects on nanoindentation of Fe bicrystal using molecular dynamic. Mech. Mater. 102, 97 (2016). https://doi.org/10.1016/j.mechmat.2016.08.016

    Article  Google Scholar 

  10. S.A. Jasim, M.H. Ali, Z.H. Mahmood, M. Rudiansyah, F.H. Alsultany, Y.F. Mustafa, M.F. Ramadan, A. Surendar, Role of alloying composition on mechanical properties of CuZr metallic glasses during the nanoindentation process. Met. Mater. Int. 28(9), 2075 (2022). https://doi.org/10.1007/s12540-021-01164-7

    Article  CAS  Google Scholar 

  11. L. Wei, F. Zhou, S. Wang, W. Hao, Y. Liu, J. Zhu, Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel. J. Mater. Res. 37(23), 4153 (2022). https://doi.org/10.1557/s43578-022-00780-2

    Article  CAS  Google Scholar 

  12. A. Mu, Y. Han, X. Song, Y. Dong, Y. Hong, G. Zhang, R. Hua, Nanoindentation into FeCoNiCrCu high-entropy alloy: an atomistic study. Mater. Sci. Technol. 37(2), 202 (2021). https://doi.org/10.1080/02670836.2021.1885095

    Article  CAS  Google Scholar 

  13. S.W. Liang, R.Z. Qiu, T.H. Fang, Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries. Beilstein J. Nanotechnol. 8, 2283 (2017). https://doi.org/10.3762/bjnano.8.228

    Article  CAS  Google Scholar 

  14. J. Li, Q. Fang, B. Liu, Y. Liu, Y. Liu, Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J Micromech Microeng. (2016). https://doi.org/10.1142/s2424913016500016

    Article  Google Scholar 

  15. D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, J. Shi, H. Wang, Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plast. 142, 102997 (2021). https://doi.org/10.1016/j.ijplas.2021.102997

    Article  CAS  Google Scholar 

  16. I. Alabd Alhafez, C.J. Ruestes, S. Zhao, A.M. Minor, H.M. Urbassek, Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2020.128821

    Article  Google Scholar 

  17. C.J. Ruestes, D. Farkas, Dislocation emission and propagation under a nano-indenter in a model high entropy alloy. Comput. Mater. Sci. 205, 111218 (2022). https://doi.org/10.1016/j.commatsci.2022.111218

    Article  CAS  Google Scholar 

  18. P. Wang, H. Wang, Meta-atom molecular dynamics for studying material property dependent deformation mechanisms of alloys. J Appl Mech. (2017). https://doi.org/10.1115/1.4037683

    Article  Google Scholar 

  19. P. Wang, Y. Wu, J. Liu, H. Wang, Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys. Extreme Mech. Lett. 17, 38 (2017). https://doi.org/10.1016/j.eml.2017.09.015

    Article  Google Scholar 

  20. P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, W. Yang, Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. J Mech Phys Solids. 98, 290 (2017). https://doi.org/10.1016/j.jmps.2016.09.008

    Article  CAS  Google Scholar 

  21. C. Huang, X. Peng, T. Fu, X. Chen, H. Xiang, Q. Li, N. Hu, Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Mater. Sci. Eng. A. 700, 609 (2017). https://doi.org/10.1016/j.msea.2017.06.048

    Article  CAS  Google Scholar 

  22. S. Goel, B. Beake, C.-W. Chan, N. Haque Faisal, N. Dunne, Twinning anisotropy of tantalum during nanoindentation. Mater. Sci. Eng. A. 627, 249 (2015). https://doi.org/10.1016/j.msea.2014.12.075

    Article  CAS  Google Scholar 

  23. P. Wang, Y. Bu, J. Liu, Q. Li, H. Wang, W. Yang, Atomic deformation mechanism and interface toughening in metastable high entropy alloy. Mater. Today. 37, 64 (2020). https://doi.org/10.1016/j.mattod.2020.02.017

    Article  CAS  Google Scholar 

  24. M.M. Biener, J. Biener, A.M. Hodge, A.V. Hamza, Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B. 76, 165422 (2007). https://doi.org/10.1103/PHYSREVB.76.165422

    Article  Google Scholar 

  25. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29(30), 1701678 (2017). https://doi.org/10.1002/adma.201701678

    Article  CAS  Google Scholar 

  26. B. FrantzDale, S.J. Plimpton, M.S. Shephard, Software components for parallel multiscale simulation: an example with LAMMPS. Eng.Comput. 26(2), 205 (2009). https://doi.org/10.1007/s00366-009-0156-z

    Article  Google Scholar 

  27. A.J.M. Stukowski, s.i.m. science and engineering, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  28. S. Shuang, S. Lu, B. Zhang, C. Bao, Q. Kan, G. Kang, X. Zhang, Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: a molecular dynamics study. Comput. Mater. Sci. 195, 110495 (2021). https://doi.org/10.1016/j.commatsci.2021.110495

    Article  CAS  Google Scholar 

  29. M. Yaghoobi, G.Z. Voyiadjis, Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 95, 626 (2014). https://doi.org/10.1016/j.commatsci.2014.08.013

    Article  CAS  Google Scholar 

  30. H. Ghaffarian, A. Karimi Taheri, S. Ryu, K. Kang, Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: a molecular dynamics simulation. Curr. Appl. Phys. 16(9), 1015 (2016). https://doi.org/10.1016/j.cap.2016.05.024

    Article  Google Scholar 

  31. Z. Ma, R.P. Gamage, C. Zhang, Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations. Int. J. Rock Mech. Min. Sci (2021). https://doi.org/10.1016/j.ijrmms.2021.104878

    Article  Google Scholar 

  32. J. Zhou, Z. Jiao, J. Zhang, Z. Zhong, Nanoindentation of single-crystal and polycrystalline yttria-stabilized zirconia: a comparative study by experiments and molecular dynamics simulations. J. Alloys Compd. 878, 160336 (2021). https://doi.org/10.1016/j.jallcom.2021.160336

    Article  CAS  Google Scholar 

  33. I. Alabd Alhafez, C.J. Ruestes, E.M. Bringa, H.M. Urbassek, Nanoindentation into a high-entropy alloy—an atomistic study. J. Alloys Compd. 803, 618 (2019). https://doi.org/10.1016/j.jallcom.2019.06.277

    Article  CAS  Google Scholar 

  34. P. Liu, J. Xie, A. Wang, D. Ma, Z. Mao, Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation. Mater. Chem. Phys. 252, 123263 (2020). https://doi.org/10.1016/j.matchemphys.2020.123263

    Article  CAS  Google Scholar 

  35. D. Hua, W. Ye, Q. Jia, Q. Zhou, Q. Xia, J. Shi, Y. Deng, H. Wang, Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Appl. Surf. Sci. 511, 145545 (2020). https://doi.org/10.1016/j.apsusc.2020.145545

    Article  CAS  Google Scholar 

  36. H.-T. Luu, S.-L. Dang, T.-V. Hoang, N. Gunkelmann, Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics. Appl. Surf. Sci. 551, 149221 (2021). https://doi.org/10.1016/j.apsusc.2021.149221

    Article  CAS  Google Scholar 

  37. A. Slagter, J. Everaerts, A. Mortensen, Nanoindentation of embedded particles. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00920-2

    Article  Google Scholar 

  38. C.-L. Liu, T.-H. Fang, J.-F. Lin, Atomistic simulations of hard and soft films under nanoindentation. Mater. Sci. Eng. A. 452–453, 135 (2007). https://doi.org/10.1016/j.msea.2006.10.093

    Article  CAS  Google Scholar 

  39. W. Peng, K. Sun, R. Abdullah, M. Zhang, J. Chen, J. Shi, Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: A molecular dynamics simulation. Appl. Surf. Sci. 487, 22 (2019). https://doi.org/10.1016/j.apsusc.2019.04.256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 52175307, 51905125, and U1737205) and the Taishan Scholars Foundation of Shandong Province (No. tsqn201812128).

Funding

National Natural Science Foundation of China, Grant Nos. 52175307, Grant Nos. 51905125, Grant Nos. U1737205, Taishan Scholar Foundation of Shandong Province, No. tsqn201812128.

Author information

Authors and Affiliations

Authors

Contributions

LiuYa-Zhou: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. Sun Jie: Investigation. Li Han-Lin: Investigation. SongYan-Yu: Investigation. Guo Ning: Resources. Long Wei-Min: Resources. Hu Sheng-Peng: Writing—review & editing. Song Xiao-Guo: Project administration, Conceptualization, Writing—review & editing.

Corresponding author

Correspondence to X. G. Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.Z., Sun, J., Li, H.L. et al. Molecular dynamics simulations for nanoindentation response of metastable high entropy alloy. Journal of Materials Research 38, 2838–2851 (2023). https://doi.org/10.1557/s43578-023-01011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01011-y

Keywords

Navigation