Skip to main content

Advertisement

Log in

Mesoporous silica application as an antidote of methotrexate and evaluation of the long-term oral administration: In vitro and in vivo study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amino-functionalized mesoporous silica (MS-NH2) was synthesized, characterized, and applied as an adsorbent and antidote agent of methotrexate (MTX) in vitro and in vivo assessment. Different techniques, such as FT-IR and XRD, analyzed the structure. The texture parameters were determined by the N2 adsorption/desorption technique. The morphology was examined using FE-SEM. Prepared materials showed to have high porosity and nano-sized pores. The capacity of synthesized material in the adsorption of MTX was checked. The in vivo experiments were performed on mice that were overdosed with MTX. Serum biomarkers were assessed, and it was discovered that MS-NH2 administration effectively decreased MTX toxicity. Furthermore, in vivo evaluation was conducted for the long-term administration of MS-NH2 in the animal model. Analysis of plasma biomarkers showed no significant changes in organ injury after long-term administration. Cytotoxicity and LDH assay showed that MS-NH2 did not impose toxicity and damage in the studied cell line.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw data of this project are available upon request.

References

  1. G.D. Weinstein, G.M. White, An approach to the treatment of moderate to severe psoriasis with rotational therapy. J. Am. Acad. Dermatol. 28(3), 454–459 (1993)

    Article  CAS  Google Scholar 

  2. B.N. Cronstein, J.R. Bertino, Methotrexate (Springer Science and Business Media, Berlin, 2000)

    Book  Google Scholar 

  3. W. Wang, H. Zhou, L. Liu, Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. Eur. J. Med. Chem. (2018). https://doi.org/10.1016/j.ejmech.2018.09.027

    Article  Google Scholar 

  4. M. Aghajanzadeh, M. Zamani, H. Molavi, H. Khieri Manjili, H. Danafar, A. Shojaei, Preparation of metal-organic frameworks UiO-66 for adsorptive removal of methotrexate from aqueous solution. J. Inorg. Organomet. Polym Mater. 28(1), 177–186 (2018). https://doi.org/10.1007/s10904-017-0709-3

    Article  CAS  Google Scholar 

  5. F. Farjadian, P. Ahmadpour, S.M. Samani, M. Hosseini, Controlled size synthesis and application of nanosphere MCM-41 as potent adsorber of drugs: a novel approach to new antidote agent for intoxication. Microporous Mesoporous Mater. 213, 30–39 (2015)

    Article  CAS  Google Scholar 

  6. G. Choi, T.-H. Kim, J.-M. Oh, J.-H. Choy, Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord. Chem. Rev. 359, 32–51 (2018). https://doi.org/10.1016/j.ccr.2018.01.007

    Article  CAS  Google Scholar 

  7. M. Ghorbani, F. Mahmoodzadeh, B. Jannat, N.F. Maroufi, B. Hashemi, L. Roshangar, Glutathione and pH-responsive fluorescent nanogels for cell imaging and targeted methotrexate delivery. Polym. Adv. Technol. 30(7), 1847–1855 (2019). https://doi.org/10.1002/pat.4617

    Article  CAS  Google Scholar 

  8. F. Hao, R.J. Lee, C. Yang, L. Zhong, Y. Sun, S. Dong, Z. Cheng, L. Teng, Q. Meng, J. Lu, Targeted co-delivery of siRNA and methotrexate for tumor therapy via mixed micelles. Pharmaceutics 11(2), 92 (2019)

    Article  CAS  Google Scholar 

  9. J. Chen, L. Huang, H. Lai, C. Lu, M. Fang, Q. Zhang, X. Luo, Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol. Pharm. 11(7), 2213–2223 (2013)

    Article  Google Scholar 

  10. F. Farjadian, S. Ghasemi, S. Mohammadi-Samani, Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate. Int. J. Pharm. 504(1–2), 110–116 (2016)

    Article  CAS  Google Scholar 

  11. Q. Gao, J. Xu, X.-H. Bu, Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 378, 17–31 (2019). https://doi.org/10.1016/j.ccr.2018.03.015

    Article  CAS  Google Scholar 

  12. A.A. Basheer, New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018). https://doi.org/10.1016/j.molliq.2018.04.021

    Article  CAS  Google Scholar 

  13. F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi, M.R. Hamblin, Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14(1), 93–126 (2018)

    Article  Google Scholar 

  14. F. Farjadian, A. Roointan, S. Mohammadi-Samani, M. Hosseini, Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J. 359, 684–705 (2019). https://doi.org/10.1016/j.cej.2018.11.156

    Article  CAS  Google Scholar 

  15. A.M. Abdelsamad, A.S. Khalil, M. Ulbricht, Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J. Membr. Sci. 563, 149–161 (2018)

    Article  CAS  Google Scholar 

  16. F. Farjadian, S. Azadi, S. Mohammadi-Samani, H. Ashrafi, A. Azadi, A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs. Heliyon 4(11), e00930 (2018). https://doi.org/10.1016/j.heliyon.2018.e00930

    Article  Google Scholar 

  17. M. Mathelié-Guinlet, I. Gammoudi, L. Beven, F. Moroté, M.-H. Delville, C. Grauby-Heywang, T. Cohen-Bouhacina, Silica nanoparticles assisted electrochemical biosensor for the detection and degradation of Escherichia Coli bacteria. Procedia Eng. 168, 1048–1051 (2016). https://doi.org/10.1016/j.proeng.2016.11.337

    Article  CAS  Google Scholar 

  18. F.W. Pratiwi, C.W. Kuo, S.-H. Wu, Y.-P. Chen, C.Y. Mou, P. Chen, Chapter Six - The bioimaging applications of mesoporous silica nanoparticles, in The Enzymes, vol. 43, ed. by F. Tamanoi (Academic Press, Cambridge, 2018), pp.123–153

    Google Scholar 

  19. F. Farjadian, M. Hosseini, S. Ghasemi, B. Tamami, Phosphinite-functionalized silica and hexagonal mesoporous silica containing palladium nanoparticles in Heck coupling reaction: synthesis, characterization, and catalytic activity. RSC Adv. 5(97), 79976–79987 (2015)

    Article  CAS  Google Scholar 

  20. M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Mesoporous silica nanoparticles for drug delivery: current insights. Molecules (Basel, Switzerland) 23(1), 47 (2017). https://doi.org/10.3390/molecules23010047

    Article  CAS  Google Scholar 

  21. F. Farjadian, M. Moghadam, M. Monfared, S. Mohammadi-Samani, Mesoporous silica nanostructure modified with azo gatekeepers for colon targeted delivery of 5-fluorouracil. AIChE J. 68, e17900 (2022)

    Article  CAS  Google Scholar 

  22. K. Zarkesh, R. Heidari, P. Iranpour, N. Azarpira, F. Ahmadi, S. Mohammadi-Samani, F. Farjadian, Theranostic hyaluronan coated EDTA modified magnetic mesoporous silica nanoparticles for targeted delivery of cisplatin. J. Drug Deliver.Sci. Technol. 77, 103903 (2022)

    Article  CAS  Google Scholar 

  23. M. Akbarian, M. Gholinejad, S. Mohammadi-Samani, F. Farjadian, Theranostic mesoporous silica nanoparticles made of multi-nuclear gold or carbon quantum dots particles serving as pH responsive drug delivery system. Microporous Mesoporous Mater. 329, 111512 (2022)

    Article  CAS  Google Scholar 

  24. M. Akbarian, L. Tayebi, S. Mohammadi-Samani, F. Farjadian, Mechanistic assessment of functionalized mesoporous silica-mediated insulin fibrillation. J. Phys. Chem. B 124(9), 1637–1652 (2020)

    CAS  Google Scholar 

  25. C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Invest. 5(3), 124 (2015)

    Article  CAS  Google Scholar 

  26. S.B. Hartono, N.T. Phuoc, M. Yu, Z. Jia, M.J. Monteiro, S. Qiao, C. Yu, Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J. Mater. Chem. B 2(6), 718–726 (2014). https://doi.org/10.1039/c3tb21015d

    Article  CAS  Google Scholar 

  27. S. Fritsch-Decker, Z. An, J. Yan, I. Hansjosten, M. Al-Rawi, R. Peravali, S. Diabaté, C. Weiss, Silica nanoparticles provoke cell death independent of p53 and BAX in human colon cancer cells. Nanomaterials 9(8), 1172 (2019)

    Article  CAS  Google Scholar 

  28. F. Farjadian, S. Ghasemi, R. Heidari, S. Mohammadi-Samani, In vitro and in vivo assessment of EDTA-modified silica nano-spheres with supreme capacity of iron capture as a novel antidote agent. Nanomed. Nanotechnol. Biol. Med. 13(2), 745–753 (2017). https://doi.org/10.1016/j.nano.2016.10.012

    Article  CAS  Google Scholar 

  29. E.R. Taqanaki, R. Heidari, M. Monfared, L. Tayebi, A. Azadi, F. Farjadian, EDTA-modified mesoporous silica as supra adsorbent of copper ions with novel approach as an antidote agent in copper toxicity. Int. J. Nanomed. 14, 7781 (2019)

    Article  CAS  Google Scholar 

  30. H. Mohammadi, R. Heidari, S.V. Niknezhad, A. Jamshidzadeh, F. Farjadian, In vitro and in vivo evaluation of succinic acid-substituted mesoporous silica for ammonia adsorption: potential application in the management of hepatic encephalopathy. Int. J. Nanomed. 15, 10085 (2020)

    Article  CAS  Google Scholar 

  31. S. Radi, S. Tighadouini, M. El Massaoudi, T.B. Hadda, M. Zaghrioui, M. Bacquet, J.P. Dacquin, I. Warad, Synthesis of 1-(Pyrrol-2-yl) imine modified silica as a new sorbent for the removal of toxic metals from aqueous solutions. J. Mater. Environ. Sci. 5, 1280–1287 (2014)

    Google Scholar 

  32. J.G. Croissant, D. Zhang, S. Alsaiari, J. Lu, L. Deng, F. Tamanoi, A.M. AlMalik, J.I. Zink, N.M. Khashab, Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release 229, 183–191 (2016)

    Article  CAS  Google Scholar 

  33. L. Vaisman, G. Marom, H.D. Wagner, Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv. Func. Mater. 16(3), 357–363 (2006). https://doi.org/10.1002/adfm.200500142

    Article  CAS  Google Scholar 

  34. S.K. Nandwani, M. Chakraborty, S. Gupta, Adsorption of surface active ionic liquids on different rock types under high salinity conditions. Sci. Rep. 9(1), 14760 (2019). https://doi.org/10.1038/s41598-019-51318-2

    Article  CAS  Google Scholar 

  35. S.K. Lakkaboyana, S. Khantong, N.K. Asmel, A. Yuzir, W.Z. Wan Yaacob, Synthesis of copper oxide nanowires-activated carbon (AC@CuO-NWs) and applied for removal methylene blue from aqueous solution: kinetics, isotherms, and thermodynamics. J. Inorg. Organomet. Polym. Mater. 29(5), 1658–1668 (2019). https://doi.org/10.1007/s10904-019-01128-w

    Article  CAS  Google Scholar 

  36. T.F. Parangi, R.M. Patel, U.V. Chudasama, Synthesis and characterization of mesoporous Si-MCM-41 materials and their application as solid acid catalysts in some esterification reactions. Bull. Mater. Sci. 37(3), 609–615 (2014). https://doi.org/10.1007/s12034-014-0709-7

    Article  CAS  Google Scholar 

  37. E. Bulut, M. Özacar, İA. Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 115(3), 234–246 (2008). https://doi.org/10.1016/j.micromeso.2008.01.039

    Article  CAS  Google Scholar 

  38. F. Farjadian, S. Schwark, M. Ulbricht, Novel functionalization of porous polypropylene microfiltration membranes: via grafted poly (Aminoethyl Methacrylate) anchored schiff base toward membrane adsorbers for metal ions. Polyn. Chem. (2014). https://doi.org/10.1039/C4PY01521E

    Article  Google Scholar 

  39. S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 280(2), 322–333 (2004). https://doi.org/10.1016/j.jcis.2004.08.078

    Article  CAS  Google Scholar 

  40. M. Jaroniec, Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm. Surf. Sci. 50(2), 553–564 (1975). https://doi.org/10.1016/0039-6028(75)90044-8

    Article  CAS  Google Scholar 

  41. A. Ahmadzadeh, N. Zamani, H. Hassanian-Moghaddam, S.K. Hadeiy, P. Parhizgar, Acute versus chronic methotrexate poisoning; a cross-sectional study. BMC Pharmacol. Toxicol. 20(1), 39 (2019). https://doi.org/10.1186/s40360-019-0316-8

    Article  Google Scholar 

  42. J. Florek, R. Caillard, F. Kleitz, Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale 9(40), 15252–15277 (2017)

    Article  CAS  Google Scholar 

  43. Y. Yu, Z. Wang, R. Wang, J. Jin, Y.Z. Zhu, Short-term oral administration of mesoporous silica nanoparticles potentially induced colon inflammation in rats through alteration of gut microbiota. Int. J. Nanomed. 16, 881 (2021)

    Article  Google Scholar 

  44. T. Yu, D. Hubbard, A. Ray, H. Ghandehari, In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J. Control. Release 163(1), 46–54 (2012)

    Article  CAS  Google Scholar 

  45. W.-T. Chan, C.-C. Liu, J.-S.C. Chiau, S.-T. Tsai, C.-K. Liang, M.-L. Cheng, H.-C. Lee, C.-Y. Yeung, S.-Y. Hou, In vivo toxicologic study of larger silica nanoparticles in mice. Int. J. Nanomed. 12, 3421 (2017)

    Article  CAS  Google Scholar 

  46. S.P.H. Moghaddam, R. Mohammadpour, H. Ghandehari, In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J. Control. Release 311, 1–15 (2019)

    Article  Google Scholar 

  47. R. Mohammadpour, D.L. Cheney, J.W. Grunberger, M. Yazdimamaghani, J. Jedrzkiewicz, K.J. Isaacson, M.A. Dobrovolskaia, H. Ghandehari, One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J. Control. Release 324, 471–481 (2020). https://doi.org/10.1016/j.jconrel.2020.05.027

    Article  CAS  Google Scholar 

  48. M. Etienne, B. Lebeau, A. Walcarius, Organically-modified mesoporous silica spheres with MCM-41 architecture. New J. Chem. 26(4), 384–386 (2002)

    Article  CAS  Google Scholar 

  49. Q. Li, Q.-Y. Yue, Y. Su, B.-Y. Gao, H.-J. Sun, Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem. Eng. J. 158(3), 489–497 (2010). https://doi.org/10.1016/j.cej.2010.01.033

    Article  CAS  Google Scholar 

  50. R. Heidari, A. Ahmadi, H. Mohammadi, M.M. Ommati, N. Azarpira, H. Niknahad, Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed. pharmacother. Biomed. pharmacother. 107, 834–840 (2018). https://doi.org/10.1016/j.biopha.2018.08.050

    Article  CAS  Google Scholar 

  51. R. Heidari, S. Behnamrad, Z. Khodami, M.M. Ommati, N. Azarpira, A. Vazin, The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed. pharmacother. Biomed. pharmacother. 109, 103–111 (2019). https://doi.org/10.1016/j.biopha.2018.10.093

    Article  CAS  Google Scholar 

  52. R. Heidari, V. Taheri, H.R. Rahimi, B. Shirazi Yeganeh, H. Niknahad, A. Najibi, Sulfasalazine-induced renal injury in rats and the protective role of thiol-reductants. Ren. Fail. 38(1), 137–141 (2016). https://doi.org/10.3109/0886022X.2015.1096731

    Article  CAS  Google Scholar 

Download references

Funding

The funding of this project (95-01-36-13763) was supported by the Research Council of Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

FF and RH participated in the conceptualization, ZS and RH participated in the data acquisition, FF, ZS, and NA participated in the data analysis, SM-S, LT, and MD were consultants & performed data analysis. All authors contributed in writing of the manuscript.

Corresponding author

Correspondence to Fatemeh Farjadian.

Ethics declarations

Conflict of interest

The authors declare no compliance with any ethical standards.

Ethical approval

Animals were handled according to the SUMS guidelines for the care and use of laboratory animals approved by a local ethics committee at SUMS, Shiraz, Iran (Ethical code # IR.SUMS.REC.1396.S18).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 573 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, R., Sepahi, Z., Mohammadi-Samani, S. et al. Mesoporous silica application as an antidote of methotrexate and evaluation of the long-term oral administration: In vitro and in vivo study. Journal of Materials Research 38, 2930–2942 (2023). https://doi.org/10.1557/s43578-023-01003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01003-y

Keywords

Navigation