Skip to main content
Log in

HfXO (X = S and Se) Janus monolayers as promising two-dimensional platforms for optoelectronic and spintronic applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the oxygen containing HfXO (X = S and Se) Janus monolayers are explored using first-principles calculations. Phonon calculations and ab initio molecular dynamic simulations are used to examine their stability. The charge transfer generates a predominant ionic character in HfSO and HfSeO monolayers, which exhibit wide gap semiconductor nature. In addition, efficient approaches are proposed to induce novel features. Specifically, applying external strain may effectively tune the electronic band gap, enhancing significantly the absorption in visible regime. Besides, doping with manganese (Mn) leads to a significant magnetization, where magnetic properties are produced mainly by dopant and its first X neighbor atoms. Feature-rich magnetic semiconductor nature app ears at low doping level. Further studying magnetic properties indicates that the magnetic phase transition may occur depending on the doping configuration. Our work recommends HfXO Janus monolayers as prospective 2D platform materials to be applied in high-performance nanoscale optoelectronic and spintronic devices.

Graphical abstract

Charge density difference (Iso-surface value: 0.01 e3; Aqua surface: Charge depletion; Yellow surface: Charge accumulation) and Bader charge analysis (Arrow indicates the charge transfer direction) of (a) HfSO and (b) HfSeO Janus monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  2. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    CAS  Google Scholar 

  3. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway et al., Experimental review of graphene. Int. Sch. Res. Not. 2012, 1–56 (2012)

    Google Scholar 

  4. Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)

    Google Scholar 

  5. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)

    Google Scholar 

  6. P. Rani, V. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3(3), 802–812 (2013)

    CAS  Google Scholar 

  7. T.P. Kaloni, R. Joshi, N. Adhikari, U. Schwingenschlogl, Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl. Phys. Lett. 104(7), 073116 (2014)

    Google Scholar 

  8. M. Pumera, C.H.A. Wong, Graphane and hydrogenated graphene. Chem. Soc. Rev. 42(14), 5987–5995 (2013)

    CAS  Google Scholar 

  9. R. Zhao, R. Jayasingha, A. Sherehiy, R. Dharmasena, M. Akhtar, J.B. Jasinski, S.-Y. Wu, V. Henner, G.U. Sumanasekera, In situ transport measurements and band gap formation of fluorinated graphene. J. Phys. Chem. C 119(34), 20150–20155 (2015)

    CAS  Google Scholar 

  10. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios et al., Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12(1), 161–166 (2012)

    Google Scholar 

  11. W. Auwärter, H.U. Suter, H. Sachdev, T. Greber, Synthesis of one monolayer of hexagonal boron nitride on Ni (111) from B-trichloroborazine (ClBNH) 3. Chem. Mater. 16(2), 343–345 (2004)

    Google Scholar 

  12. A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9(9), 8869–8884 (2015)

    CAS  Google Scholar 

  13. W. Zhang, H. Enriquez, Y. Tong, A. Bendounan, A. Kara, A.P. Seitsonen, A.J. Mayne, G. Dujardin, H. Oughaddou, Epitaxial synthesis of blue phosphorene. Small 14(51), 1804066 (2018)

    Google Scholar 

  14. O. Salim, K. Mahmoud, K. Pant, R. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019)

    CAS  Google Scholar 

  15. A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)

    Google Scholar 

  16. G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 8(16), 8986–8994 (2016)

    CAS  Google Scholar 

  17. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 1–15 (2017)

    Google Scholar 

  18. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of twodimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017)

    CAS  Google Scholar 

  19. A. Gupta, V. Arunachalam, S. Vasudevan, Liquid-phase exfoliation of MoS2 nanosheets: the critical role of trace water. J. Phys. Chem. Lett. 7(23), 4884–4890 (2016)

    CAS  Google Scholar 

  20. R.K. Jha, P.K. Guha, Liquid exfoliated pristine WS2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology 27(47), 475503 (2016)

    Google Scholar 

  21. S.M. Poh, X. Zhao, S.J.R. Tan, D. Fu, W. Fei, L. Chu, D. Jiadong, W. Zhou, S.J. Pennycook, A.H. Castro Neto et al., Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 12(8), 7562–7570 (2018)

    CAS  Google Scholar 

  22. A. Roy, H.C. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, S.K. Banerjee, Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 8(11), 7396–7402 (2016)

    CAS  Google Scholar 

  23. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)

    CAS  Google Scholar 

  24. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015)

    CAS  Google Scholar 

  25. Z. Lin, M.T. Thee, A.L. Elías, S. Feng, C. Zhou, K. Fujisawa, N. Perea-López, V. Carozo, H. Terrones, M. Terrones, Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Mater. 2(9), 092514 (2014)

    Google Scholar 

  26. T.J.S. Anand, S. Shariza, A study on molybdenum sulphoselenide (MoSxSe2-x, 0 ≤x ≤2) thin films: growth from solution and its properties. Electrochim. Acta 81, 64–73 (2012)

    CAS  Google Scholar 

  27. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11(8), 8192–8198 (2017)

    CAS  Google Scholar 

  28. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017)

    CAS  Google Scholar 

  29. L. Hu, D. Wei, Janus group-iii chalcogenide monolayers and derivative type-II heterojunctions as water-splitting photocatalysts with strong visible-light absorbance. J. Phys. Chem. C 122(49), 27795–27802 (2018)

    CAS  Google Scholar 

  30. Y. Zhu, X. Wang, W. Mi, Two-dimensional M2SD (M= Ge, Sn; D= Se, Te) monolayers with puckered structure: electronic structure and optical properties. Phys. E. 117, 113802 (2020)

    CAS  Google Scholar 

  31. T.V. Vu, N.N. Hieu, Novel Janus group III chalcogenide monolayers Al2XY2 (X/Y= S, Se, Te): first-principles insight onto the structural, electronic, and transport properties. J. Phys.: Condens. Matter 34(11), 115601 (2021)

    Google Scholar 

  32. L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11(8), 8242–8248 (2017)

    CAS  Google Scholar 

  33. S.-D. Guo, X.-S. Guo, R.-Y. Han, Y. Deng, Predicted Janus SnSSe monolayer: a comprehensive first-principles study. Phys. Chem. Chem. Phys. 21(44), 24620–24628 (2019)

    CAS  Google Scholar 

  34. Z. Wei, J. Tang, X. Li, Z. Chi, Y. Wang, Q. Wang, B. Han, N. Li, B. Huang, J. Li et al., Wafer-scale oxygendoped MoS 2 monolayer. Small Methods 5(6), 2100091 (2021)

    CAS  Google Scholar 

  35. J. Tang, Z. Wei, Q. Wang, Y. Wang, B. Han, X. Li, B. Huang, M. Liao, J. Liu, N. Li et al., In situ oxygen doping of monolayer MoS2 for novel electronics. Small 16(42), 2004276 (2020)

    CAS  Google Scholar 

  36. V. Van On, D.K. Nguyen, J. Guerrero-Sanchez, D. Hoat, Exploring the electronic band gap of Janus MoSeO and WSeO monolayers and their heterostructures. New J. Chem. 45(44), 20776–20786 (2021)

    Google Scholar 

  37. M. Demirtas, B. Ozdemir, Y. Mogulkoc, E. Durgun, Oxygenation of monolayer gallium monochalcogenides: design of two-dimensional ternary Ga2XO structures (X= S, Se, Te). Phys. Rev. B 101(7), 075423 (2020)

    CAS  Google Scholar 

  38. M.J. Varjovi, M. Yagmurcukardes, F.M. Peeters, E. Durgun, Janus two-dimensional transition metal dichalcogenide oxides: first-principles investigation of WXO monolayers with X= S, Se, and Te. Phys. Rev. B 103(19), 195438 (2021)

    CAS  Google Scholar 

  39. D.K. Nguyen, J. Guerrero-Sanchez, V. Van On, J. Rivas Silva, R. Ponce-Pérez, G.H. Cocoletzi, D. Hoat, Tuning MoSO monolayer properties for optoelectronic and spintronic applications: effect of external strain, vacancies and doping. RSC Adv. 11(56), 35614–35623 (2021)

    CAS  Google Scholar 

  40. N.N. Hieu, H.V. Phuc, A. Kartamyshev, T.V. Vu, Structural, electronic, and transport properties of quintuple atomic janus monolayers Ga2SX2 (X= O, S, Se, Te): first-principles predictions. Phys. Rev. B 105(7), 075402 (2022)

    CAS  Google Scholar 

  41. D.K. Nguyen, J. Guerrero-Sanchez, T.V. Vu, R. Ponce Pérez, D. Hoat, Electronic and magnetic properties of the WSO Janus monolayer engineered by intrinsic defects. Surf. Interfaces 32, 102114 (2022)

    CAS  Google Scholar 

  42. T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, Y. Miyamoto, Few-layer HfS2 transistors. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  43. H. Kaur, S. Yadav, A.K. Srivastava, N. Singh, S. Rath, J.J. Schneider, O.P. Sinha, R. Srivastava, High-yield synthesis and liquid-exfoliation of two-dimensional beltlike hafnium disulphide. Nano Res. 11(1), 343–353 (2018)

    CAS  Google Scholar 

  44. D. Wang, X. Zhang, H. Liu, J. Meng, J. Xia, Z. Yin, Y. Wang, J. You, X.-M. Meng, Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater. 4(3), 031012 (2017)

    Google Scholar 

  45. R.K. Ulaganathan, R. Sankar, C.-Y. Lin, R.C. Murugesan, K. Tang, F.-C. Chou, High-performance flexible broadband photodetectors based on 2D hafnium selenosulfide nanosheets. Adv. Electron. Mater. 6(1), 1900794 (2020)

    CAS  Google Scholar 

  46. R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou et al., HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9(1), 474–480 (2015)

    CAS  Google Scholar 

  47. K. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S. Giamini, E. Vassalou, N. Kelaidis, A. Dimoulas, Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl. Phys. Lett. 106(14), 143105 (2015)

    Google Scholar 

  48. M. Salavati, Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Front. Struct. Civ. Eng. 13(2), 486–494 (2019)

    Google Scholar 

  49. D. Singh, R. Ahuja, Enhanced optoelectronic and thermoelectric properties by intrinsic structural defects in monolayer HfS2. ACS Appl. Energy Mater. 2(9), 6891–6903 (2019)

    CAS  Google Scholar 

  50. D. Hoat, R. Ponce-Pérez, T.V. Vu, J. Rivas-Silva, G.H. Cocoletzi, Theoretical analysis of the HfS2 monolayer electronic structure and optical properties under vertical strain effects. Optik 225, 165718 (2021)

    CAS  Google Scholar 

  51. D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng et al., Large-area synthesis of layered HfS2(1–x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30(44), 1803285 (2018)

    Google Scholar 

  52. M. Razeghizadeh, M. Pourfath, First principles study on structural, electronic and optical properties of HfS2(1–x)Se2xx and ZrS2(1–x)Se2x ternary alloys. RSC Adv. 12(22), 14061–14068 (2022)

    CAS  Google Scholar 

  53. D. Hoat, M. Naseri, N.N. Hieu, R. Ponce-Pérez, J. RivasSilva, T.V. Vu, G.H. Cocoletzi, A comprehensive investigation on electronic structure, optical and thermoelectric properties of the HfSSe Janus monolayer. J. Phys. Chem. Solids 144, 109490 (2020)

    CAS  Google Scholar 

  54. J. Bera, A. Betal, S. Sahu, Ultralow lattice thermal conductivity and high thermoelectric performance near room temperature of Janus monolayer HfSSe. arXiv:2003.02439

  55. H. Wang, B. Dai, N.-N. Ge, X.-W. Zhang, G.-F. Ji, High thermoelectric performance of Janus monolayer and bilayer HfSSe. Phys. Status Solidi (B) 259, 2200090 (2022)

    CAS  Google Scholar 

  56. M.-Y. Liu, L. Gong, Y. He, C. Cao, Tuning rashba effect, band inversion, and spin-charge conversion of Janus XSn2Y monolayers via an external field. Phys. Rev. B 103(7), 075421 (2021)

    CAS  Google Scholar 

  57. R. Ahammed, N. Jena, A. Rawat, M. K. Mohanta, Dimple, A. De Sarkar, Ultrahigh out-of-plane piezoelectricity meets giant rashba effect in 2D Janus monolayers and bilayers of group IV transition-metal trichalcogenides, J. Phys. Chem. C 124(39), 21250–21260 (2020)

  58. M.K. Mohanta, A. Rawat, N. Jena, R. Ahammed, A. De Sarkar et al., Ultra-low lattice thermal conductivity and giant phonon–electric field coupling in hafnium dichalcogenide monolayers. J. Phys.: Condens. Matter 32(31), 315301 (2020)

    Google Scholar 

  59. M. Demirtas, M.J. Varjovi, M.M. Çiçek, E. Durgun, Tuning structural and electronic properties of twodimensional aluminum monochalcogenides: Prediction of Janus Al2XX’(X/X’: O, S, Se, Te) monolayers. Phys. Rev. Mater. 4(11), 114003 (2020)

    CAS  Google Scholar 

  60. P. Nandi, A. Rawat, R. Ahammed, N. Jena, A. De Sarkar, Group-IV (A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity. Nanoscale 13(10), 5460–5478 (2021)

    CAS  Google Scholar 

  61. H.L. Zhuang, V.R. Cooper, H. Xu, P. Ganesh, R.G. Hennig, P. Kent, Rashba effect in single-layer antimony telluroiodide SbTeI. Phys. Rev. B 92(11), 115302 (2015)

    Google Scholar 

  62. W.-L. Tao, J.-Q. Lan, C.-E. Hu, Y. Cheng, J. Zhu, H.-Y. Geng, Thermoelectric properties of Janus MXY (M= Pd, Pt; X, Y= S, Se, Te) transition-metal dichalcogenide monolayers from first principles. J. Appl. Phys. 127(3), 035101 (2020)

    CAS  Google Scholar 

  63. A. Kandemir, H. Sahin, Janus single layers of In2SSe: A first-principles study. Phys. Rev. B 97(15), 155410 (2018)

    CAS  Google Scholar 

  64. L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, Janus WSSe monolayer: an excellent photocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 12(26), 29335–29343 (2020)

    CAS  Google Scholar 

  65. A. Rawat, M. K. Mohanta, N. Jena, Dimple, R. Ahammed, A. De Sarkar, Nanoscale interfaces of Janus monolayers of transition metal dichalcogenides for 2D photovoltaic and piezoelectric applications, J. Phys. Chem. C 124(19), 10385–10397 (2020)

  66. Y. Wang, W. Wei, H. Wang, N. Mao, F. Li, B. Huang, Y. Dai, Janus TiXY monolayers with tunable berry curvature. J. Phys. Chem. Lett. 10(23), 7426–7432 (2019)

    CAS  Google Scholar 

  67. R. Peng, Y. Ma, B. Huang, Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 7(2), 603–610 (2019)

    CAS  Google Scholar 

  68. N. Jena, A. Rawat, R. Ahammed, M.K. Mohanta, A. De Sarkar et al., Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers. J. Mater. Chem. A 6(48), 24885–24898 (2018)

    Google Scholar 

  69. Y. Chen, J. Liu, J. Yu, Y. Guo, Q. Sun, Symmetry breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 21(3), 1207–1216 (2019)

    CAS  Google Scholar 

  70. R. Li, J. Jiang, X. Shi, W. Mi, H. Bai, Two-dimensional Janus FeXY (X, Y= Cl, Br, and I, X 6= Y) monolayers: Half-metallic ferromagnets with tunable magnetic properties under strain. ACS Appl. Mater. Interfaces 13(32), 38897–38905 (2021)

    CAS  Google Scholar 

  71. M.K. Mohanta, A. De Sarkar, Interfacial hybridization of Janus MoSSe and BX (X= P, As) monolayers for ultrathin excitonic solar cells, nano piezotronics and low-power memory devices. Nanoscale 12(44), 22645–22657 (2020)

    CAS  Google Scholar 

  72. W. Chen, X. Hou, X. Shi, H. Pan, Two-dimensional janus transition metal oxides and chalcogenides: multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces 10(41), 35289–35295 (2018)

    CAS  Google Scholar 

  73. Y.F. Luo, Y. Pang, M. Tang, Q. Song, M. Wang, Electronic properties of Janus MoSSe nanotubes. Comput. Mater. Sci. 156, 315–320 (2019)

    CAS  Google Scholar 

  74. F.T. Bölle, A.E. Mikkelsen, K.S. Thygesen, T. Vegge, I.E. Castelli, Structural and chemical mechanisms governing stability of inorganic Janus nanotubes. NPJ Comput. Mater. 7(1), 1–8 (2021)

    Google Scholar 

  75. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt, N.F. Hinsche, M.N. Gjerding, D. Torelli, P.M. Larsen, A.C. Riis-Jensen et al., The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5(4), 042002 (2018)

    CAS  Google Scholar 

  76. M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N.R. Knøsgaard, M. Kruse, A.H. Larsen, S. Manti et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8(4), 044002 (2021)

    CAS  Google Scholar 

  77. J. Gusakova, X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, B.K. Tay, Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method). Phys. Status Solidi (A) 214(12), 1700218 (2017)

    Google Scholar 

  78. Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi (B) 254(9), 1700033 (2017)

    Google Scholar 

  79. Q. Alam, M. Idrees, S. Muhammad, C.V. Nguyen, M. Shafiq, Y. Saeed, H. Din, B. Amin, Stacking effects in van der waals heterostructures of blueP and Janus XYO (X= Ti, Zr, Hf: Y= S, Se) monolayers. RSC Adv. 11(20), 12189–12199 (2021)

    CAS  Google Scholar 

  80. W. Luo, Y. Ma, X. Gong, H. Xiang, Prediction of silicon-based layered structures for optoelectronic applications. J. Am. Chem. Soc. 136(45), 15992–15997 (2014)

    CAS  Google Scholar 

  81. M. Gajdoˇs, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projectoraugmented wave methodology. Phys. Rev. B 73(4), 045112 (2006)

    Google Scholar 

  82. B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A.V. Shapeev, X. Zhuang, Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi 2N 4 family confirmed by first-principles. Nano Energy 82, 105716 (2021)

    CAS  Google Scholar 

  83. E.C. Ahn, 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4(1), 1–14 (2020)

    Google Scholar 

  84. Y. Liu, C. Zeng, J. Zhong, J. Ding, Z.M. Wang, Z. Liu, Spintronics in two-dimensional materials. Nano-Micro Lett. 12(1), 1–26 (2020)

    Google Scholar 

  85. P. Sharma, A. Gupta, F.J. Owens, A. Inoue, K.V. Rao, Room temperature spintronic material-Mn-doped ZnO revisited. J. Magn. Magn. Mater. 282, 115–121 (2004)

    CAS  Google Scholar 

  86. A. Krivosheeva, V. Shaposhnikov, V. Lyskouski, V. Borisenko, F.A. d’Avitaya, J.-L. Lazzari, Prospects on Mn-doped ZnGeP2 for spintronics. Microelectron. Reliab. 46(9–11), 1747–1749 (2006)

    CAS  Google Scholar 

  87. Y. Mao, J. Zhong, Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene. Nanotechnology 19(20), 205708 (2008)

    Google Scholar 

  88. A. Ramasubramaniam, D. Naveh, Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87(19), 195201 (2013)

    Google Scholar 

  89. A. Ali, J.-M. Zhang, I. Muhammad, X.-M. Wei, I. Ahmad, M.U. Rehman, Changing the electronic and magnetic properties of monolayer HfS2 by doping and vacancy defects: Insight from first-principles calculations. Phys. Status Solidi (B) 257(6), 1900768 (2020)

    CAS  Google Scholar 

  90. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    CAS  Google Scholar 

  91. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    CAS  Google Scholar 

  92. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Google Scholar 

  93. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  Google Scholar 

  94. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    CAS  Google Scholar 

  95. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505 (1998)

    CAS  Google Scholar 

  96. Y. Wang, S. Li, J. Yi, Transition metal-doped tin monoxide monolayer: a first-principles study. J. Phys. Chem. C 122(8), 4651–4661 (2018)

    CAS  Google Scholar 

  97. H.J. Monkhorst, J.D. Pack, Special points for Brillouinzone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Google Scholar 

Download references

Acknowledgements

Calculations were performed in the high-performance computing cluster (HPCC) of Thu Dau Mot University (TDMU) and DGCTIC-UNAM Supercomputing Center (projects LANCAD-UNAM-DGTIC-368 and LANCADUNAM-DGTIC-390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Hoat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 717 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.K., Guerrero-Sanchez, J. & Hoat, D.M. HfXO (X = S and Se) Janus monolayers as promising two-dimensional platforms for optoelectronic and spintronic applications. Journal of Materials Research 38, 2600–2612 (2023). https://doi.org/10.1557/s43578-023-00989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00989-9

Navigation