Skip to main content
Log in

Impact of NiTbxFe2−XO4 nanofiller in PVDF matrix for the characterization of magnetic, dielectric properties and effectiveness of EMI shielding

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reports the influence of the inclusion of terbium-doped nickel ferrite [NiTbxFe2−xO4 (x = 0.1, 0.2, 0.3)] nanofiller in polyvinylidene fluoride (PVDF) matrix for modification of the dielectric and magnetic properties of polymer nanocomposite. The dielectric spectroscopic analysis reveals a significant improvement in permittivity for a certain filler (x = 0.3) content in the PVDF matrix. The magnetization (M–H) and FC-ZFC studies show a decrement in blocking (Tb) temperature with high filler loading. Hard ferrimagnetic characteristics predominate over soft ferromagnetic properties at high filler concentrations. The higher saturation magnetization, high retentivity, high coercively and a wider hysteresis loop area are seen in the low-temperature regions. The lower skin depth and better shielding effectiveness give a great platform to the films for the fabrication of electromagnetic shielding (EMI) devices in the high-frequency domain. The light weight of Tb-NFO-PVDF nanocomposite film poses superior advantages against traditional EMI shielding material.

Graphical abstract

TOC: Represents magnetization plot, ZC & ZFC change with temperature (Inset) and skin depth with frequency plot (Inset).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  2. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloys Compd. 493(1–2), 553–560 (2010). https://doi.org/10.1016/j.jallcom.2009.12.154

    Article  CAS  Google Scholar 

  3. X. Batlle, N. Perez, P. Guardia, O. Iglesias, A. Labarta, F. Bartolome, L.M. Garcia, J. Bartolome, A.G. Roca, M.P. Morales, C.J. Serna, Recent advances in magnetic nanoparticles with bulk-like properties. J Appl. Phys. 109, 07B524 (2011)

    Article  Google Scholar 

  4. G.L. Sun, J.B. Li, J.J. Sun, X.Z. Yang, The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel-zinc ferrites. J. Magn. Magn. Mater. 281, 173–177 (2004). https://doi.org/10.1016/j.jmmm.2004.04.099

    Article  CAS  Google Scholar 

  5. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009). https://doi.org/10.1016/j.jmmm.2009.07.011

    Article  CAS  Google Scholar 

  6. V. Franco, J.S. Blazquez, J.J. Law, J.Y. Moreno-Ramírez, L.M. Conde, A Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  7. S. Atta, M. Halder, T. Chatterjee, R. Karmakar, A.K. Meikap, Influence of neodymium doping in tuning microstructural, optical and magneto-dielectric properties of nickel ferrite nanoparticles. Mater. Chem. Phys. 285, 126094 (2022). https://doi.org/10.1016/j.matchemphys.2022.126094

    Article  CAS  Google Scholar 

  8. K. Srinivasamurthy, V. Angadi, S. Kubrin, S. Matteppanavar, P.M. Kumar, B. Rudraswamy, Evidence of enhanced ferromagnetic nature and hyperfine interaction studies of Ce-Sm doped Co-Ni ferrite nanoparticles for microphone applications. Ceram. Int. 44, 18878–18885 (2018). https://doi.org/10.1016/j.ceramint.2018.07.123

    Article  CAS  Google Scholar 

  9. N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 473, 228–235 (2019). https://doi.org/10.1016/j.jmmm.2018.10.023

    Article  CAS  Google Scholar 

  10. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol-gel route. J. Magn. Magn. Mater. 460, 268–277 (2018). https://doi.org/10.1016/j.mseb.2016.03.011

    Article  CAS  Google Scholar 

  11. J. Sahariya, H.S. Mund, A. Sharma, A. Dashora, M. Itou, Y. Sakurai, B.L. Ahuja, Magnetic properties of NiFe2-XRExO4 (RE=Dy, Gd) using magnetic Compton scattering. J. Magn. Magn. Mater. 360, 113–117 (2014). https://doi.org/10.1016/j.jmmm.2014.02.045

    Article  CAS  Google Scholar 

  12. D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandal, Miscibility of poly (styrene-co-butyl acrylate) with poly (ethyl methacrylate): existence of both UCST and LCST. J. Polym. Sci. Part B 38(3), 369–375 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3/3C369::AID-POLB3/3E3.0.CO;2-W

    Article  CAS  Google Scholar 

  13. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Analogue calorimetric studies of blends of poly (vinyl ester) and polyacrylates. Macromolecules 29(5), 1579–1583 (1996). https://doi.org/10.1021/ma950954n

    Article  CAS  Google Scholar 

  14. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Analogue calorimetry of polymer blends: poly (styrene-co-acrylonitrile) and poly (phenyl acrylate) or poly (vinyl benzoate). Polymer 37(12), 2439–2443 (1996). https://doi.org/10.1016/0032-3861(96)85356-0

    Article  CAS  Google Scholar 

  15. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-co-acrylonitrile) blends. Polymer 34(7), 1454–1459 (1993). https://doi.org/10.1016/0032-3861(93)90861-4

    Article  CAS  Google Scholar 

  16. S. Atta, M. Halder, A.K. Meikap, Effect of terbium doping on the optical, electrical and magnetic properties of nanocrystalline nickel ferrite. J. Mater. Sci. 32(6), 6992–7008 (2021). https://doi.org/10.1007/s10854-021-05407-6

    Article  CAS  Google Scholar 

  17. S.S. Tzeng, Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers. Carbon 44(10), 1986–1993 (2006). https://doi.org/10.1016/j.carbon.2006.01.024

    Article  CAS  Google Scholar 

  18. K. Gao, X. Hu, C. Dai, T. Yi, Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng. B 131, 100–105 (2006). https://doi.org/10.1016/j.mseb.2006.03.035

    Article  CAS  Google Scholar 

  19. M. Sang, S. Wang, M. Liu, L. Bai, W. Jiang, S. Xuan, X. Gong, Fabrication of a piezoelectric polyvinylidene fluoride/carbonyl iron (PVDF/CI) magnetic composite film towards the magnetic field and deformation bi-sensor. Compos. Sci. Technol. 165, 31–38 (2018). https://doi.org/10.1016/j.compscitech.2018.06.006

    Article  CAS  Google Scholar 

  20. P.D. Prasad, J. Hemalatha, Energy harvesting performance of magnetoelectric poly (vinylidene fluoride)/NiFe2O4 nanofiber films. J. Magn. Magn. Mater. 532, 167986 (2021). https://doi.org/10.1016/j.jmmm.2021.167986

    Article  CAS  Google Scholar 

  21. K.N. Harish, H.S.B. Naik, P.N.P. Kumar, R. Viswanath, Optical and photocatalytic properties of solar light active Nd-substituted Ni ferrite catalysts: for environmental protection. ACS Sustain. Chem. Eng. 1(9), 1143–1153 (2013). https://doi.org/10.1021/sc400060z

    Article  CAS  Google Scholar 

  22. A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(1), 1–8 (2013). https://doi.org/10.1007/s10965-012-0043-y

    Article  CAS  Google Scholar 

  23. S. Atta, M. Haldar, A.K. Das, A.K. Meikap, Study of electrical transport, dielectric and magnetic properties of NiFe2O4-PVDF nanocomposite film. Physica E Low Dimens. Syst. Nanostruct. 114, 113632 (2019). https://doi.org/10.1016/j.physe.2019.113632

    Article  CAS  Google Scholar 

  24. T. Nishiyama, T. Sumihara, Y. Sasaki, E. Sato, M. Yamato, H. Horibe, Crystalline structure control of poly (vinylidene fluoride) films with the antisolvent addition method. Polym. J. 48(10), 1035–1038 (2016). https://doi.org/10.1038/pj.2016.62

    Article  CAS  Google Scholar 

  25. A.A. Al-Tabbakh, M.A. More, D.S. Joag, I.S. Mulla, V.K. Pillai, The Fowler-Nordheim plot behavior and mechanism of field electron emission from ZnO tetrapod structures. ACS Nano 4(10), 5585–5590 (2010). https://doi.org/10.1021/nn1008403

    Article  CAS  Google Scholar 

  26. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A 119, 173–181 (1928). https://doi.org/10.1098/rspa.1928.0091

    Article  CAS  Google Scholar 

  27. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  28. I. Jyothi, H.D. Yang, K.H. Shim, V. Janardhanam, S.M. Kang, H. Hong, C.J. Choi, Mater. Trans. 14, 1655 (2013). https://doi.org/10.2320/matertrans.M2013015

    Article  CAS  Google Scholar 

  29. Z.J. Horvath, I. Gyuro, M.N. Sallay, Near-interface concentration reduction in n-type Au/Cr GaAs Schottky contacts P. Tutto. Vacuum 40, 201–203 (1990). https://doi.org/10.1016/0042-207X(90)90156-S

    Article  CAS  Google Scholar 

  30. M. Vivona, F. Giannazzo, F. Roccaforte, Materials and processes for Schottky contacts on silicon carbide. Materials 15(1), 298 (2022). https://doi.org/10.3390/ma15010298

    Article  CAS  Google Scholar 

  31. M.K. Hudait, S.B. Krupanidhi, Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys. B: Condens. Matter 307(1–4), 125–137 (2001). https://doi.org/10.1016/S0921-4526(01)00631-7

    Article  CAS  Google Scholar 

  32. M. Halder, A.K. Das, A.K. Meikap, Effect of BiFeO3 nanoparticle on electrical, thermal and magnetic properties of polyvinyl alcohol (PVA) composite film. Mater. Res. Bull. 104, 179–187 (2018). https://doi.org/10.1016/j.materresbull.2018.01.036

    Article  CAS  Google Scholar 

  33. Y. Song, Y. Shen, H.Y. Lin, Y.H. Lin, M. Li, C.W. Nan, Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22, 16491–16498 (2012). https://doi.org/10.1039/C2JM32579A

    Article  CAS  Google Scholar 

  34. W. Xia, Z. Xu, F. Wen, Z. Zhang, Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram. Int. 38, 1071–1075 (2012). https://doi.org/10.1016/j.ceramint.2011.08.033

    Article  CAS  Google Scholar 

  35. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Semiconducting selenium nanoparticles: structural, electrical characterization, and formation of a back-to-back Schottky diode device. J. Appl. Phys. 113, 123704–123711 (2013). https://doi.org/10.1063/1.4796106

    Article  CAS  Google Scholar 

  36. G. Chakraborty, K. Gupta, D. Rana, A.K. Meikap, Electrical transport properties of the composite of multiwall carbon nanotube–polypyrrole–polyvinyl alcohol below room temperature. Polym. Compos. 33(3), 343–352 (2012). https://doi.org/10.1002/pc.22153

    Article  CAS  Google Scholar 

  37. G. Chakraborty, K. Gupta, D. Rana, A.K. Meikap, Effect of multiwalled carbon nanotubes on electrical conductivity and magneto-conductivity of polyaniline. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(3), 035015 (2012). https://doi.org/10.1088/2043-6262/3/3/035015

    Article  CAS  Google Scholar 

  38. G. Chakraborty, K. Gupta, D. Rana, A.K. Meikap, Dielectric relaxation in polyvinyl alcohol–polypyrrole–multiwall carbon nanotube composites below room temperature. Adv. Nat. Sci. Nanosci. Nanotechnol. 4(2), 025005 (2013). https://doi.org/10.1088/2043-6262/4/2/025005

    Article  CAS  Google Scholar 

  39. P.S. Mukherjee, K. Gupta, D. Rana, A.K. Meikap, Magnetoconductivity and electrical transport of polyaniline coated ternary carbide Ti0.9Al0.1C. Indian J. Phys. 91, 1331–1338 (2017). https://doi.org/10.1007/s12648-017-1043-x

    Article  CAS  Google Scholar 

  40. A.K. Das, R. Dharmana, A. Mukherjee, K. Baba, R. Hatada, A.K. Meikap, Influence of the functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film. J. Appl. Phys. 123, 145105 (2018). https://doi.org/10.1063/1.5022712

    Article  CAS  Google Scholar 

  41. L. Shen, M. Liu, C. Ma, L. Lu, H. Fu, C. You, X. Lu, C.L. Jia, Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates. Mater. Horiz. 5(2), 230–239 (2018). https://doi.org/10.1039/C7MH00939A

    Article  CAS  Google Scholar 

  42. B. Dutta, E. Kar, G. Sen, N. Bose, S. Mukherjee, Lightweight, flexible NiO@ SiO2/PVDF nanocomposite film for UV protection and EMI shielding application. Mater. Res. Bull. 124, 110746 (2020). https://doi.org/10.1016/j.materresbull.2019.110746

    Article  CAS  Google Scholar 

  43. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloys Compd. 598, 142–150 (2014). https://doi.org/10.1016/j.jallcom.2014.01.245

    Article  CAS  Google Scholar 

  44. Z. Wang, T. Wang, C. Wang, Y. Xiao, The effect of interfacial interaction-induced soft percolation regime on dielectric properties in Ba (Fe0.55Nb0.5)O3/P(VDF-TrFE) nanocomposites. J. Mater. Sci. 52(19), 11496–11505 (2017). https://doi.org/10.1007/s10853-017-1290-4

    Article  CAS  Google Scholar 

  45. D. Sellmyer, R. Skomski, Advanced Magnetic Nanostructures, 1st edn. (Springer, New York, 2006), p.494

    Book  Google Scholar 

  46. M. Abdullah Dar, J. Shah, W.A. Siddiqui, R.K. Kotnala, Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl. Nanosci. 4(6), 675–682 (2014). https://doi.org/10.1007/s13204-013-0241-x

    Article  CAS  Google Scholar 

  47. D. Peddis, C. Cannas, G. Piccaluga, E. Agostinelli, D. Fiorani, Surface spin freezing effects on enhanced saturation magnetization and magnetic anisotropy in CoFe2O4 nanoparticles. Nanotechnology 21, 125705 (2010)

    Article  CAS  Google Scholar 

  48. X. Chen, S. Bedanta, O. Petracic, W. Kleemann, S. Sahoo, S. Cardoso, P.P. Freitas, P. Freitas, Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems. Phys. Rev. B 72, 214436 (2005). https://doi.org/10.1103/PhysRevB.72.214436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of the CoE at NIT for this study. The authors would also like to thank CRF at IIT Kharagpur for providing the SQUID instrument for magnetic measurements.

Funding

Department of Science and Technology, Government of India, (Project no. EMR/2016/001409).

Author information

Authors and Affiliations

Authors

Contributions

SA: Investigation, Formal analysis, writing original draft, Validation. MH: Formal analysis, Resources, Validation. VB: Investigation, Validation. AKM: Supervision, Conceptualization, Methodology, Visualization, Validation, Project administration.

Corresponding author

Correspondence to Ajit Kumar Meikap.

Ethics declarations

Conflict of interest

There are no conflicts to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, S., Halder, M., Bharti, V. et al. Impact of NiTbxFe2−XO4 nanofiller in PVDF matrix for the characterization of magnetic, dielectric properties and effectiveness of EMI shielding. Journal of Materials Research 38, 2474–2485 (2023). https://doi.org/10.1557/s43578-023-00979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00979-x

Keywords

Navigation