Skip to main content
Log in

Facile fabrication of magnetic-cobalt-nanoparticle-plated carbon aerogel by an electroless plating strategy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Coating of magnetic metal nanoparticles on carbon aerogel (CA) is of great significance and urgency for applications such as electromagnetic absorption and shielding. In this study, using a new electroless plating strategy, and the effects of experimental parameters, such as activation time, plating loading, bath temperature, pH value and reductant concentration on the coating amount, particles size distribution, as well as the microstructural morphology of Co/CA were systematically investigated. Overall, the maximum Co coating amount reached 73.6%, with outstanding conductivity and magnetic performances. The saturation magnetization strength of the as-obtained Co/CA was 67.1 emu g−1, the residual magnetization strength was 16.6 emu g−1 and the coercive force was 711.9 Oe, higher than those of similar Co@C@CA and Fe3O4@ZIF-67@CA in literature. In addition, this paper also clarified the mechanism of activation and plating of a Co-plated CA, setting the foundation for its development and possible applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. W.M. Zhang, B. Zhao, H.M. Xiang, F.Z. Dai, S.J. Wu, Y.C. Zhou, One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J. Adv. Ceram. 10, 62 (2021). https://doi.org/10.1007/s40145-020-0417-2

    Article  CAS  Google Scholar 

  2. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421

    Article  CAS  Google Scholar 

  3. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25, 1296 (2013). https://doi.org/10.1002/adma.201204196

    Article  CAS  Google Scholar 

  4. P. Sambyal, A.P. Singh, M. Verma, M. Farukh, B.P. Singh, S.K. Dhawan, Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. Rsc Adv. 4, 12614 (2014). https://doi.org/10.1039/c3ra46479b

    Article  CAS  Google Scholar 

  5. L.F. Liu, Q.S. Zhang, Analysis of electromagnetic shielding effectiveness of metal material, in Advanced engineering materials and technology (AEMT). (Trans Tech Publications Ltd, Zhuhai, 2012)

    Google Scholar 

  6. D. Guo, Y.J. Huo, C.P. Mu et al., Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating. J. Alloys Compd. 923, 9 (2022). https://doi.org/10.1016/j.jallcom.2022.166401

    Article  CAS  Google Scholar 

  7. R. Jan, A. Habib, M.A. Akram et al., Flexible, thin films of graphene-polymer composites for EMI shielding. Mater. Res. Express 4, 9 (2017). https://doi.org/10.1088/2053-1591/aa6351

    Article  CAS  Google Scholar 

  8. S. Teotia, B.P. Singh, I. Elizabeth et al., Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. Rsc Adv. 4, 33168 (2014). https://doi.org/10.1039/c4ra04183f

    Article  CAS  Google Scholar 

  9. X.L. Wu, T. Wen, H.L. Guo, S.B. Yang, X.K. Wang, A.W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589 (2013). https://doi.org/10.1021/nn400566d

    Article  CAS  Google Scholar 

  10. Y.K. Choi, S.J. Park, Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels. Carbon Lett. 16, 127 (2015). https://doi.org/10.5714/cl.2015.16.2.127

    Article  Google Scholar 

  11. S.K. Singh, K.Y. Rhee, S.Y. Lee, S.J. Park, Facile fabrication of poly(vinyl alcohol)/silica composites for removal of Hg(II) from water. Macromol. Res. 23, 21 (2015). https://doi.org/10.1007/s13233-015-3010-8

    Article  CAS  Google Scholar 

  12. L.P. Guo, W.C. Li, B. Qiu, Z.X. Ren, J. Du, A.H. Lu, Interfacial assembled preparation of porous carbon composites for selective CO2 capture at elevated temperatures. J Mater Chem A 7, 5402 (2019). https://doi.org/10.1039/c8ta12122b

    Article  CAS  Google Scholar 

  13. E. Masika, R. Mokaya, High surface area metal salt templated carbon aerogels via a simple subcritical drying route: preparation and CO2 uptake properties. Rsc Adv. 3, 17677 (2013). https://doi.org/10.1039/c3ra43420f

    Article  CAS  Google Scholar 

  14. S.S. Wang, Y.L. Xu, M.F. Yan, L.H. Zhang, Z.F. Liu, The effect of surfactants on carbon xerogel structure and CO2 capture. J. Non-Cryst. Solids 499, 101 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.023

    Article  CAS  Google Scholar 

  15. F.Y. Zeng, Z.Y. Sui, S. Liu, H.P. Liang, H.H. Zhan, B.H. Han, Nitrogen-doped carbon aerogels with high surface area for supercapacitors and gas adsorption. Mater. Today Commun. 16, 1 (2018). https://doi.org/10.1016/j.mtcomm.2018.03.015

    Article  CAS  Google Scholar 

  16. Y.T. Lu, H.Q. Wang, Y. Lu, An architectural exfoliated-graphene carbon aerogel with superhydrophobicity and efficient selectivity. Mater. Des. 184, 9 (2019). https://doi.org/10.1016/j.matdes.2019.108134

    Article  CAS  Google Scholar 

  17. M. Canal-Rodriguez, A. Arenillas, N. Rey-Raap, G. Ramos-Fernandez, I. Martin-Gullon, J.A. Menendez, Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon 118, 291 (2017). https://doi.org/10.1016/j.carbon.2017.03.059

    Article  CAS  Google Scholar 

  18. Q.Q. Zhang, X. Xu, H. Li, G.P. Xiong, H. Hu, T.S. Fisher, Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659 (2015). https://doi.org/10.1016/j.carbon.2015.05.102

    Article  CAS  Google Scholar 

  19. Z.H. Zhou, M.Z. Li, H.D. Huang et al., Structuring hierarchically porous architecture in biomass-derived carbon aerogels for simultaneously achieving high electromagnetic interference shielding effectiveness and high absorption coefficient. ACS Appl Mater Inter 12, 18840 (2020). https://doi.org/10.1021/acsami.0c01190

    Article  CAS  Google Scholar 

  20. T.T. Bai, Y. Guo, H. Liu et al., Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 8, 5191 (2020). https://doi.org/10.1039/d0tc00448k

    Article  CAS  Google Scholar 

  21. M. Park, B. Pant, J. Choi et al., Facile preparation of self-assembled wool-based graphene hydrogels by electron beam irradiation. Carbon Lett. 15, 136 (2014). https://doi.org/10.5714/cl.2014.15.2.136

    Article  Google Scholar 

  22. H. Zhuo, Y.J. Hu, X. Tong, L.X. Zhong, X.W. Peng, R.C. Sun, Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crop. Prod. 87, 229 (2016). https://doi.org/10.1016/j.indcrop.2016.04.041

    Article  CAS  Google Scholar 

  23. P. Hao, Z.H. Zhao, J. Tian et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120 (2014). https://doi.org/10.1039/c4nr03574g

    Article  CAS  Google Scholar 

  24. S.S. Long, Y.C. Feng, Y.Z. Liu et al., Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Sep Purif Technol 254, 9 (2021). https://doi.org/10.1016/j.seppur.2020.117577

    Article  CAS  Google Scholar 

  25. Y. Hardjono, H.Q. Sun, H.Y. Tian, C.E. Buckley, S.B. Wang, Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem Eng J 174, 376 (2011). https://doi.org/10.1016/j.cej.2011.09.009

    Article  CAS  Google Scholar 

  26. O. Gomez-Capiro, A. Hinkle, A.M. Delgado, C. Fernandez, R. Jimenez, L.E. Arteaga-Perez, Carbon aerogel-supported nickel and iron for gasification gas cleaning. Part I: ammonia adsorption. Catalysts 8, 24 (2018). https://doi.org/10.3390/catal8090347

    Article  CAS  Google Scholar 

  27. E.L. Hu, X.B. Wu, S.M. Shang, X.M. Tao, S.X. Jiang, L. Gan, Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 112, 4710 (2016). https://doi.org/10.1016/j.jclepro.2015.06.127

    Article  CAS  Google Scholar 

  28. C.C. Wan, Y. Jiao, T.G. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (alpha-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr. Polym. 156, 427 (2017). https://doi.org/10.1016/j.carbpol.2016.09.028

    Article  CAS  Google Scholar 

  29. S. Zhao, H.B. Zhang, J.Q. Luo et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193 (2018). https://doi.org/10.1021/acsnano.8b05739

    Article  CAS  Google Scholar 

  30. J.W. Li, Y.Q. Ding, N. Yu et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45 (2020). https://doi.org/10.1016/j.carbon.2019.11.075

    Article  CAS  Google Scholar 

  31. H.B. Zhao, Z.B. Fu, X.Y. Liu et al., Magnetic and conductive Ni/carbon Aerogels toward high-performance microwave absorption. Ind Eng Chem Res 57, 202 (2018). https://doi.org/10.1021/acs.iecr.7b03612

    Article  CAS  Google Scholar 

  32. L. Wang, M.C. Liu, G. Wang, B. Dai, F. Yu, J.L. Zhang, An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 776, 43 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214

    Article  CAS  Google Scholar 

  33. F. Bu, J.F. Zhang, S.B. Yu et al., Effective surface pretreatment of hollow glass microspheres via a combined KF roughening and alkali washing strategy for the following metallization. Adv. Powder. Technol. 31, 2305 (2020). https://doi.org/10.1016/j.apt.2020.03.024

    Article  CAS  Google Scholar 

  34. G.H. Pan, J. Zhu, S.L. Ma, G.B. Sun, X.J. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl Mater Inter 5, 12716 (2013). https://doi.org/10.1021/am404117v

    Article  CAS  Google Scholar 

  35. J. Zhang, Y.C. Su, H.Z. Zhang, L.B. Wang, Q.S. Yu, Bi-phase metallic cobalt with efficient broadband absorption in X and Ku bands. J. Mater. Sci. Mater. Electron. 30, 18268 (2019). https://doi.org/10.1007/s10854-019-02181-4

    Article  CAS  Google Scholar 

  36. M.A. Elsayed, P.J. Hall, M.J. Heslop, Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation. Adsorpt. J. Int. Adsorpt. Soc. 13, 299 (2007). https://doi.org/10.1007/s10450-007-9065-x

    Article  CAS  Google Scholar 

  37. Y.L. Wang, B.B. Chang, D.X. Guan, X.P. Dong, Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J. Solid State Electrochem. 19, 1783 (2015). https://doi.org/10.1007/s10008-015-2789-8

    Article  CAS  Google Scholar 

  38. A. Kobayashi, G.I. Konishi, Synthesis and analysis of resorcinol-acetone copolymer. Molecules 14, 364 (2009). https://doi.org/10.3390/molecules14010364

    Article  CAS  Google Scholar 

  39. L.L.A. Melo, A.H. Ide, J.L.S. Duarte et al., Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. Environ. Sci. Pollut. Res. 27, 27048 (2020). https://doi.org/10.1007/s11356-020-09053-z

    Article  CAS  Google Scholar 

  40. A.A. Mahani, S. Motahari, V. Nayyeri, Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel. Rsc Adv. 8, 10855 (2018). https://doi.org/10.1039/c8ra00196k

    Article  CAS  Google Scholar 

  41. S. Abolhasani, A. Ahmadpour, T.R. Bastami, A. Yaqubzadeh, Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental updates design (CCD). J. Mol. Liq. 281, 261 (2019). https://doi.org/10.1016/j.molliq.2019.02.084

    Article  CAS  Google Scholar 

  42. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41, 215 (2003). https://doi.org/10.1016/s0008-6223(02)00265-8

    Article  CAS  Google Scholar 

  43. L. Stobinski, B. Lesiak, L. Kover et al., Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77 (2010). https://doi.org/10.1016/j.jallcom.2010.04.032

    Article  CAS  Google Scholar 

  44. E. Ergul, H.I. Kurt, M. Oduncuoglu, N.F. Yilmaz, Electroless nickel-phosphorus and cobalt-phosphorus coatings on multi-walled carbon nanotubes. Mater. Res. Express 7, 14 (2020). https://doi.org/10.1088/2053-1591/abcc3f

    Article  CAS  Google Scholar 

  45. Y. Xiong, L.L. Xu, C.X. Yang, Q.F. Sun, X.J. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J Mater Chem A 8, 18863 (2020). https://doi.org/10.1039/d0ta05540a

    Article  CAS  Google Scholar 

  46. D. Wang, W. Fan, S.J. Yuan, T.X. Liu, Improving hierarchical porous structure of carbon aerogels for more efficient ion transport for supercapacitors with commercial level mass loading. Electrochim. Acta 323, 10 (2019). https://doi.org/10.1016/j.electacta.2019.134811

    Article  CAS  Google Scholar 

  47. Z.H. Li, X.G. Li, Y.H. Liao, X.P. Li, W.S. Li, Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability. J. Power Sources 334, 23 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.003

    Article  CAS  Google Scholar 

  48. Y.Y. Zhou, W.C. Zhou, R. Li, Y. Mu, Y.C. Qing, Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating. J. Alloys Compd. 637, 10 (2015). https://doi.org/10.1016/j.jallcom.2015.03.014

    Article  CAS  Google Scholar 

  49. F. Liu, H.Y. Zhou, Z.C. Pan et al., Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: performance, degradation pathways and mechanistic consideration. J. Hazard. Mater. 400, 13 (2020). https://doi.org/10.1016/j.jhazmat.2020.123322

    Article  CAS  Google Scholar 

  50. J. Tong, J.F. Zhang, Y. Wang et al., Preparation of co-plated WC powders by a non-precious-co-activation triggered electroless plating strategy. Adv. Powder. Technol. 30, 2311 (2019). https://doi.org/10.1016/j.apt.2019.07.012

    Article  CAS  Google Scholar 

  51. L.M. Zeng, X.Z. Cui, L.S. Chen et al., Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon 114, 347 (2017). https://doi.org/10.1016/j.carbon.2016.12.017

    Article  CAS  Google Scholar 

  52. P. Venkatesan, Z. Sun, J. Sietsma, Y. Yang, Electrochemical recovery of rare earth elements from magnet scrap- a theoretical analysis. Eur. Rare Earth Resour. Conf. 2014, 163 (2014)

    Google Scholar 

  53. J.W. Park, E.H. Chae, S.H. Kim et al., Preparation of fine Ni powders from nickel hydrazine complex. Mater. Chem. Phys. 97, 371 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.028

    Article  CAS  Google Scholar 

  54. P. Bindra, J. Tweedie, Mechanisms of electroless metal plating: I. Application of the mixed potential theory. J. Electrochem. Soc. 130, 1112 (1983). https://doi.org/10.1149/1.2119895

    Article  CAS  Google Scholar 

  55. J.E.A.M. Van Den Meerakker, On the mechanism of electroless plating. II. One mechanism for different reductants. J. Appl. Electrochem. 11, 395 (1981). https://doi.org/10.1007/BF00613960

    Article  Google Scholar 

  56. L.L. Xu, Y. Xiong, B.K. Dang et al., In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. 182, 9 (2019). https://doi.org/10.1016/j.matdes.2019.108006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Major Science and Technology Projects of Anhui Province (Grant Number 2021e03020005) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

HH: Conceptualization, Methodology, Software, Formal analysis, Data curation, Writing—Original Draft. JZ: Writing-Review & Editing, Supervision, Funding acquisition. FB: Validation, Data curation. LJ: Formal analysis, Writing-Review & Editing. JW: Formal analysis, Writing-Review & Editing. YL: Writing-Review & Editing, Supervision. CX: Writing-Review & Editing, Supervision.

Corresponding author

Correspondence to Jianfeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4507 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, J., Bu, F. et al. Facile fabrication of magnetic-cobalt-nanoparticle-plated carbon aerogel by an electroless plating strategy. Journal of Materials Research 38, 2188–2202 (2023). https://doi.org/10.1557/s43578-023-00939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00939-5

Keywords

Navigation