Skip to main content

Advertisement

Log in

Review of materials science and technological applications of transformational integrated multifunctional oxide/ultrananocrystalline diamond (UNCD) films/crystalline diamond for new generation of high-tech and biomedical devices

  • Review
  • MRS Fellows Focus
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

R&D on materials science/integration of multifunctional oxide and polycrystalline diamond films and crystalline diamond are being performed to enable new generations of multifunctional high-tech and biomedical devices for transformational impact on the way/quality of life of people. Key multifunctional oxide films investigated include:

  • Nanolaminate structured TiOx/Al2O3 and HfO2/TiOx films exhibiting super-high dielectric constants (k = 400–1100), enabling new generation gate oxides for nano-electronics and supercapacitors for energy storage, specifically, integrated with crystalline diamond, may enable transformational diamond micro/nano-electronics beyond silicon.

  • Films with ferroelectric/piezoelectric properties [e.g., Pb (ZrxTi1-x) O3 (PZT) and BiFeO3 (BFO), the latter being biocompatible], integrated with polycrystalline diamond films, enabling new generations of piezo-actuated MEMS/NEMS’ biosensors and energy generation devices.

  • Key multifunctional diamond in film and crystalline form include:

  • Crystalline diamond, exhibiting superior electronic carrier mobility and thermal transport, enabling transformational new generation of micro/nano-electronics based on unique integration with super high-k dielectric nanolaminates oxides.

  • Unique transformational ultrananocrystalline diamond (UNCD) film (3–5 nm grains/smallest of any poly-diamond film), with unique combination of highest hardness (98 GPa) and Young’s modulus (998 GPa), equivalent to diamond gem, lowest coefficient of friction (0.02–0.04) of any diamond film, only electrically conductive diamond film via Nitrogen (N) atoms in grain boundaries or Boron atoms substituting C atoms in the diamond lattice, yielding electrons for conductivity, and best biocompatible coating demonstrated today, integrated with piezoelectric oxide films, enable new generation of piezo-actuated MEMS/NEMS’ biosensors and energy generation devices.

This review describes the materials science and technological applications developed in recent years for transformational integration of key multifunctional oxides / UNCD films / crystalline diamond.

Graphical abstract

The graphical abstrat shows key science and technolgies related to trnaformational integration of super-high-k dielectric films with crystalline diamond and piezoelectric films with UNCD films for new generation MEMS/NEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  1. R.M. Wallace, G.D. Wilk, High-κ dielectric materials for microelectronics. Crit Rev. Solid State Mater. Sci. 28(4), 231 (2003). https://doi.org/10.1080/714037708

    Article  CAS  Google Scholar 

  2. J. Robertson, High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28(3), 265 (2004)

    Article  CAS  Google Scholar 

  3. R. Wallace, O. Auciello, Science and technology of high-dielectric constant (κ) thin films for next generation CMOS, in Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale. Multifunctional Thin Films Book Series, ed. by O. Auciello, R. Ramesh (Springer, New York, 2005), p. 79

  4. J. Robertson, New high-K materials for CMOS applications, in Comprehensive Semiconductor Science and Technology, vol. 4, ed. by R. Fornari (Elsevier, Amsterdam, The Netherlands, 2011), p. 132

    Chapter  Google Scholar 

  5. J.F. Scott, High-dielectric constant thin films for dynamic random-access memories (DRAM). Annu. Rev. Mater. Sci. 28(1), 79 (1998). https://doi.org/10.1146/annurev.matsci.28.1.79

    Article  CAS  Google Scholar 

  6. S.W. Lee, O.S. Kwon, J.H. Han, C.S. Hwang, Enhanced electrical properties of SrTiO3 thin films grown by atomic layer deposition at high temperature for dynamic random-access memory applications. Appl. Phys. Lett. 92(22), 222903 (2008). https://doi.org/10.1063/12939102

    Article  Google Scholar 

  7. S.K. Kim, G.-J. Choi, S.Y. Lee, M. Seo, S.W. Lee, J.H. Han, H.-S. Ahn, S. Han, C.S. Hwang, Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 20, 1429 (2008)

    Article  CAS  Google Scholar 

  8. R.D. Clark, Emerging applications for high-k materials in VLSI technology. Materials 7, 2913 (2014)

    Article  Google Scholar 

  9. H. Kim, P.C. McIntyre, K.C. Saraswat, Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82(1), 106 (2003)

    Article  CAS  Google Scholar 

  10. H. Hu, C. Zhu, X. Yu et al., MIM capacitors using atomic-layer-deposited high-k (HfO2)1–x(Al2O3)x dielectrics. IEEE Electron Device Lett. 24(2), 60 (2003). https://doi.org/10.1109/LED.2002.807703

    Article  CAS  Google Scholar 

  11. C.H. Cheng, S.H. Lin, K.Y. Jhou et al., High density and low leakage current in TiO2MIM capacitors processed at 300 °C. IEEE Elect. Device Lett. 29(8), 845 (2008). https://doi.org/10.1109/LED.2008.2000833

    Article  CAS  Google Scholar 

  12. E. Denes, G. Barrière, E. Poli, G. Lévêque, (Review) Alumina biocompatibility. J. Long-Term Effec. Med. Impl. 28(1), 9 (2018)

    Article  Google Scholar 

  13. J. Huang, P. Dong, W. Hao, T. Wang, Y. Xia, G. Da, Y. Fan, Biocompatibility of TiO2 and TiO2/heparin coatings on NiTi alloy. Appl. Surf. Sci. 313, 172 (2014)

    Article  CAS  Google Scholar 

  14. O. Auciello, W. Fan, B. Kabius, S. Saha, J.A. Carlisle, C. Lopez, E.A. Irene, R.A. Baragiola, A new hybrid TixAl1-xOy gate dielectric layer for next generation ultra-high capacitance density CMOS gates. Appl. Phys. Lett. 86, 042904 (2005)

    Article  Google Scholar 

  15. K. Kukli, J. Ihanus, M. Ritala, M. Leskela, “Tailoring the dielectric properties of HfO2/Ta2O5 Nanolaminates. Appl. Phys. Lett. 68, 3737 (1996)

    Article  CAS  Google Scholar 

  16. K. Karakaya, A. Zinine, J.G.M. Van Berkum, M.A. Verheijen, Z.M. Rittersma, G. Rijnders, D.H.A. Blank, Characterization of laminated CeO2/HfO2 high-k gate dielectrics grown by pulsed laser deposition. J. Electrochem. Soc. 153, F233 (2006)

    Article  CAS  Google Scholar 

  17. Y. Liang, N.D. Theodore, J. Curless, C. Tracy, Physical and electrical properties of nanolaminated HfO2/LaAlO3/HfO2 dielectric on Si. J. Appl. Phys. 99, 066110 (2006). https://doi.org/10.1063/12186026

    Article  Google Scholar 

  18. I. Jogi, A. Tamm, K. Kukli, M. Kemell, J. Lu, T. Sajavaara, M. Ritala, M. Leskelä, Investigation of ZrO2− Gd2O3 based high-k materials as capacitor dielectrics. J. Electrochem. Soc. 157, G202 (2010)

    Article  CAS  Google Scholar 

  19. G. Balakrishnan, A. Wasy, H.S. Ho, P. Sudhakara, S.I. Bae, J.I. Song, Study of Al2O3/ZrO2 (5 nm/20nm) nanolaminate Composite. Comp. Res. 26 (1), 60 (2013)

    Google Scholar 

  20. J. Yang, X. Yang, Y. Zhang, B. Che, X. Ding, J. Zhang, Improved gate bias stressing stability of IGZO thin film transistors using high-k compounded ZrO2/HfO2 nanolaminate as gate dielectric. Mol. Cryst. Liq. Cryst. 676, 65 (2018)

    Article  CAS  Google Scholar 

  21. M. Upadhyay, M.B. Elbahri, M. Mezhoud, R.C. Germanicus, U. Lüders, Thickness dependence of dielectric properties in sub-nanometric Al2O3/ZnO laminates. Solid-State Electron. 186, 108070 (2021)

    Article  CAS  Google Scholar 

  22. J.W. Park, S. Kwon, J.H. Kwon, C.Y. Kim, K.C. Choi, Low-Leakage fiber-based field-effect transistors with an Al2 O3/MgO Nanolaminate as Gate Insulator. Appl. Elec. Mater. 1, 1400 (2019)

    Article  CAS  Google Scholar 

  23. R.L. Nigro, E. Schilirò, P. Fiorenza, F. Roccaforte, Nanolaminated Al2O3/HfO2 dielectrics for silicon carbide-based devices. J. Vac. Sci. Technol. A38, 032410 (2020)

    Article  Google Scholar 

  24. I. Jõgi, K. Kukli, M. Kemell, M. Ritala, M. Leskelä, Electrical characterization of AlxTiyOz mixtures and Al2O3–TiO2–Al2O3 nanolaminates. J. Appl. Phys. 102(11), 114114 (2007). https://doi.org/10.1063/12822460

    Article  Google Scholar 

  25. W. Li, O. Auciello, R.N. Premnath, B. Kabius, Giant dielectric constant dominated by Maxwell-Wagner relaxation in Al2O3/TiOx nanolaminates synthesized by atomic layer deposition. Appl. Phys. Lett 96(16), 162907 (2010). https://doi.org/10.1063/13413961

    Article  Google Scholar 

  26. G. Lee, B.-K. Lai, C. Phatak, R.S. Katiyar, O. Auciello, Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices. J. Appl. Phys. 114(2), 027001 (2013). https://doi.org/10.1063/1.481181

    Article  Google Scholar 

  27. Y. Baek, S. Lim, L.H. Kim, S. Park, S.W. Lee, T.H. Oh, S.H. Kim, C.E. Park, Al2O3/TiO2 Nanolaminate gate dielectric films with enhanced electrical performances for organic field-effect transistors. Org. Electron. 28, 139 (2016)

    Article  CAS  Google Scholar 

  28. P. Padhi, S.K. Rai, H. Srivastava, R.S. Ajimsha, A.K. Srivastava, P. Misra, “Maxwell−Wagner relaxation-driven high dielectric constant in Al2O3/TiO2 nanolaminates grown by pulsed laser deposition. ACS Appl. Mater. Interfaces 14, 12873 (2022)

    Article  CAS  Google Scholar 

  29. O. Auciello, G. Lee, C. Wu, Y. Chen, J.J. Alcantar-Peña, I. Mejia, E. de Obaldia, Super high-dielectric constant oxide films for next-generation nano-electronics and supercapacitors for energy storage. MRS Bulletin 45, 232 (2020)

    Article  Google Scholar 

  30. H. Sato, M. Kasu, “Maximum hole concentration for hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2. Diam. Relat. Mater. 31, 47 (2013)

    Article  CAS  Google Scholar 

  31. Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata et al., Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage. IEEE Electron Dev. Lett. 38(3), 363 (2017)

    Article  CAS  Google Scholar 

  32. S. Imanishi, K. Horikawa, N. Oi, S. Okubo, T. Kageura, A. Hiraiwa, H. Kawarada, 3.8 W/mm power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Dev. Lett. 40(2), 279 (2019)

    Article  CAS  Google Scholar 

  33. J. Liu, O. Auciello, E. de Obaldia, B. Da, Y. Koide, Science and Technology of integrated super-high dielectric constant AlOx/TiOy nanolaminates/diamond for MOS capacitors and MOSFETs. Carbon 122, 112 (2021)

    Article  Google Scholar 

  34. K. Lakin, A review of thin-film resonator technology. IEEE Microw. Mag. 4(4), 61 (2003)

    Article  Google Scholar 

  35. T. Matsushima et al., High performance 4 GHz FBAR prepared by Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 sputtered thin film, IEEE International Frequency Control Symposium (2010), p. 248

  36. O. Auciello, J.F. Scott, R. Ramesh, The physics of ferroelectric memories. Phys. Today 51(7), 22 (1998)

    Article  CAS  Google Scholar 

  37. C.A. Paz de Araujo, O. Auciello, R. Ramesh (eds.), Science and Technology of Integrated Ferroelectrics: Past Eleven Years of the International Symposium on Integrated Ferroelectrics Proceedings, vol. 11 (Gordon and Breach Publishers, New York, 2000)

    Google Scholar 

  38. O. Auciello, C.M. Foster, R. Ramesh, Processing technological for ferroelectric thin films and heterostructures, in Annual Review of Materials Science, vol. 28, ed. by O. Auciello, R. Ramesh (Annual Reviews Publisher, San Mateo, CA, USA, 1998), p. 501

  39. O. Auciello, R. Dat, R. Ramesh, Pulsed laser ablation-deposition and characterization of ferroelectric thin films and heterostructures, in Ferroelectric Thin Films: Synthesis and Basic Properties. ed. by C.A. Paz de Araujo, J.F. Scott, G.W. Taylor (Gordon and Breach Publishers, New York, 1996), p. 525

    Google Scholar 

  40. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004)

    Article  CAS  Google Scholar 

  41. K. Franke, J. Besold, W. Haessler, C. Seegebarth, Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf. Sci. Lett. 302, L283 (1994)

    Article  CAS  Google Scholar 

  42. A. Gruverman, O. Auciello, H. Tokumoto, Scanning force microscopy for the study of domain structure in ferroelectric thin films. J. of Vac Sci. Technol. B14, 602 (1996)

    Article  Google Scholar 

  43. A. Gruverman, O. Auciello, H. Tokumoto, Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy, in Annual Review of Materials Science, vol. 28, ed. by O. Auciello, R. Ramesh (Annual Reviews Publisher, San Mateo, CA, USA, 1998), p. 101

  44. O. Auciello, A. Gruverman, H. Tokumoto, S.A. Prakash, S. Aggarwal, R. Ramesh, Nanoscale scanning force imaging of polarization phenomena in ferroelectric thin films. MRS Bull. 23(1), 37 (1998)

    Article  Google Scholar 

  45. V. Nagarayan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Mengailis, O. Auciello, R. Ramesh, Dynamics of ferroelastic domains in ferroelectric thin films. Nat.-Mater. 2, 43 (2003)

    Article  Google Scholar 

  46. A. Kholkin, S. Kalinin, A. Roelofs, A. Gruverman, Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, vol. 2, ed. by S. Kalinin, A. Gruverman (Springer, New York, 2007)

    Google Scholar 

  47. J.A. Klug, M.V. Holt, R.N. Premnath, A. Joshi-Imre, S. Hong, R.S. Katiyar, M.J. Bedzyk, O. Auciello, Elastic relaxation and correlation of local strain gradients with ferroelectric domains in (001) BiFeO3 nanostructures. Appl. Phys. Lett. 98, 052902 (2011)

    Article  Google Scholar 

  48. G. Lee, E.M.A. Fuentes-Fernandez, G. Lian, R.S. Katiyar, O. Auciello, Hetero-epitaxial BiFeO3/SrTiO3 nanolaminates with higher piezo response performance over stoichiometric BiFeO3 films. Appl. Phys. Lett. 106, 022905 (2015)

    Article  Google Scholar 

  49. R. Nath, S. Hong, J.A. Klug, A. Joshi-Imre, M.J. Bedzyk, R.S. Katiyar, O. Auciello, Effects of cantilever buckling on vector piezo response force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures. Appl. Phys. Lett. 96, 163101 (2010)

    Article  Google Scholar 

  50. O. Auciello, A.V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diamond Relat. Mat. 19, 699 (2010)

    Article  CAS  Google Scholar 

  51. V.P. Adiga, A.V. Sumant, S. Suresh, C. Gudeman, O. Auciello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond micro-resonators. Phys. Rev. B 79, 245403 (2009)

    Article  Google Scholar 

  52. S. Sudarsan, J. Hiller, B. Kabius, O. Auciello, Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl. Phys. Lett. 90, 134101 (2007)

    Article  Google Scholar 

  53. O. Auciello, G. Lee, Ch 9, Science and technology of integrated multifunctional piezoelectric oxides/ ultranano-crystalline diamond (UNCDTM) films for a new generation of biomedical mems energy generation, drug delivery and sensor devices, in Ultrananocrystalline Diamond Coatings for New Generation High-Tech and Medical Devices, ed. by O. Auciello (Cambridge Publisher, Cambridge, 2022), p. 23

    Chapter  Google Scholar 

Download references

Acknowledgments

O. Auciello acknowledge different sources which supported and colleagues who made major contributions to the science and technological reviewed in this article, Funding for R&D on multifunctional oxides and UNCD film technologies, during the last twenty years, include: Distinguished Endowed Chair Professor Grant from University of Texas-Dallas (2012-present); SENACYT-Panamá, Department of Energy-Basic Energy Sciences Grants, DARPA Grants, ONR Grants, National Science Foundation Grants, and Industrial funding (Rubio-Pharma-México, UHV-Nanoranch, Samsung, INTEL, Lam, Lockheed-Martin). Auciello acknowledges the contributions of the four main scientists that jointly with him performed the R&D to develop the UNCD coating technology using the MPCVD method (D.M. Gruen, A.R. Krauss, J.A. Carlisle, A.V. Sumant), and the R&D related to the HFCVD technique (J.-F. Veyan, E. de Obaldia, J. J. Alcantar-Peña, E. M. A. Fuentes-Fernandez, K. Kang, P. Tirado, A. G. Montaño-Figueroa). He also acknowledges key contributors to the science on multifunctional oxides and integration with UNCD (C. Lee, Y. Chen, I. Mejia, R.S. Katiyar, M.J. Bedzyk). Auciello also acknowledges A. Gruverman with whom the PFM technique was developed to image piezoelectric domains. O. Auciello acknowledges support from different sources, which supported the science and technological applications of the UNCD coatings, during the last twenty years, namely: Distinguished Endowed Chair Professor Gran from University of Texas-Dallas; SENACYT-Panamá, Department of Energy-Basic Energy Sciences Grants, DARPA Grants, ONR Grants, National Science Foundation Grants, and Industrial funding (Rubio-Pharma-México, UHV-Nanoranch, Samsung, INTEL, Lam, Lockheed-Martin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Auciello.

Ethics declarations

Conflict of interest

There are not conflict of interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auciello, O. Review of materials science and technological applications of transformational integrated multifunctional oxide/ultrananocrystalline diamond (UNCD) films/crystalline diamond for new generation of high-tech and biomedical devices. Journal of Materials Research 38, 571–585 (2023). https://doi.org/10.1557/s43578-023-00897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00897-y

Keywords

Navigation