Skip to main content

Advertisement

Log in

Structural, magnetic, and photocatalytic properties of core–shell reversal nanocomposites of titanium-doped strontium ferrite and silica

  • Invited Paper
  • FOCUS ISSUE: Mössbauer Spectroscopy from Artificial Nano Architectures to Environmental Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 29 May 2024

This article has been updated

Abstract

This paper presents the effect of core–shell reversal on the photocatalytic potential of titanium-doped strontium ferrite (Sr0.4Ti0.6Fe2O4.6) and silica (SiO2) nanocomposites. The construction of core–shell-structured Z-scheme systems is a valid strategy to effectively enhance photocatalytic activity. Mӧssbauer spectroscopy studies demonstrated the more lowering of hyperfine field values for SiO2@Sr0.4Ti0.6Fe2O4.6 compared to Sr0.4Ti0.6Fe2O4.6@SiO2 core–shell nanocomposite. The Sr0.4Ti0.6Fe2O4.6@SiO2 nanocomposite had higher BET-specific surface area of 117.3 m2/g than that of SiO2@Sr0.4Ti0.6Fe2O4.6 (106.9 m2/g). The Sr0.4Ti0.6Fe2O4.6@SiO2 exhibited higher photocatalytic activity than SiO2@Sr0.4Ti0.6Fe2O4.6 for the degradation of model pesticide, pendimethalin (\(\sim\) 96%). It was ascribed to the narrowing of bandgap, high surface area, and decrease in the photoluminescence intensity. A Z-scheme photocatalytic degradation mechanism for pendimethalin over Sr0.4Ti0.6Fe2O4.6@SiO2 nanocomposite was proposed. The results indicate that the designing of core–shell structures can play a significant role in improving the photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

Change history

References

  1. E.A. Bakr, M.N. El-Nahass, W.M. Hamada, T.A. Fayed, Facile synthesis of superparamagnetic Fe3O4@noble metal core–shell nanoparticles by thermal decomposition and hydrothermal methods: comparative study and catalytic applications. RSC. Adv. 11, 781–797 (2021)

    CAS  Google Scholar 

  2. C. Wu, F. Huang, Q. Shen, L. Yu, C. Zhang, J. Sheng, D. Cheng, H. Yang, Construction of magnetically separable hierarchical Z-scheme NiFe2O4@Bi2Sn2O7 heterojunction with enhanced visible-light photocatalytic activity. J. Mater. Res. 36, 3366–3379 (2021)

    Google Scholar 

  3. J.K. Grewal, M. Kaur, Effect of core-shell reversal on the structural, magnetic and adsorptive properties of Fe2O3-GO nanocomposites. Ceram. Int. 43, 16611–16621 (2017)

    CAS  Google Scholar 

  4. V. Nica, C. Caro, J.M.P. Munon, M.P. Leal, M.L.G. Martin, Bi-Magnetic core-shell CoFe2O4@MnFe2O4 nanoparticles for in vivo theranostics. Nanomaterials 10(5), 907 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. A.S. Al-Hussaini, E.M.A. Hameed, M.E.R. Hassan, Synthesis of smart core-shell nanocomposites with enhanced photocatalytic efficacy. Polym-Plast. Tech. Mater. 59, 1956–1966 (2020)

    CAS  Google Scholar 

  6. M. Na, X. Ping, L. Rui, M. Lan, S. Keren, Flower-like hybrid composite MoS2/NH2-MIL-101(Cr): a highly efficient photocatalyst for degrading indole under visible light. J. Mater. Res. 36, 4460–4474 (2021)

    Google Scholar 

  7. M.S. Angotzi, V. Mameli, C. Cara, D. Peddis, H.L. Xin, C. Sangregorio, M.L. Mercuri, C. Cannas, On the synthesis of bi-magnetic manganese ferrite-based core–shell nanoparticles. Nanoscale Adv. 3, 1612–1623 (2021)

    Google Scholar 

  8. Y. Zhang, Q. Yue, M.M. Zagho, J. Zhang, A.A. Elzatahry, Y. Jiang, Y. Deng, Core−shell magnetic mesoporous silica microspheres with large mesopores for enzyme immobilization in biocatalysis. ACS Appl. Mater. Interfaces. 11, 10356–10363 (2019)

    CAS  PubMed  Google Scholar 

  9. Y. Li, J. Liu, Y. Fu, Q. Xie, Y. Li, Correction to: Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Microchim. Acta 186, 456 (2019)

    Google Scholar 

  10. M.E. Mehr, H.M. Ghaleh, M. Yarahmadi, M. Kavanlouei, M.H. Siadati, Synthesis and characterization of photocatalytic zinc oxide/titanium oxide (core/shell) nanocomposites. J. Alloys Compd. 882, 160777 (2021)

    CAS  Google Scholar 

  11. P. Eskandari, Z. Zand, F. Kazemi, M. Ramdar, Enhanced catalytic activity of one-dimensional CdS @TiO2 core-shell nanocomposites for selective organic transformations under visible LED irradiation. J. Photochem. Photobiol. A. 418, 113404 (2021)

    CAS  Google Scholar 

  12. J. You, Y. Guo, Atomic layer deposition of fcc-FePt nanoparticles on g-C3N4 for magnetically recyclable photocatalysts with enhanced photocatalytic performance. Ceram. Int. 45, 2451–2456 (2019)

    CAS  Google Scholar 

  13. Y. Chai, F. Feng, Q. Li, C. Yu, X. Feng, P. Lu, X. Yu, M. Ge, X. Wang, L. Yao, One-pot synthesis of high-quality bimagnetic core/shell nanocrystals with diverse exchange coupling. J. Am. Chem. Soc. 141, 3366–3370 (2019)

    CAS  PubMed  Google Scholar 

  14. V. Nica, C. Caro, J. Maria, P. Munon, M.P. Leal, M.L.G. Martin, Bi-magnetic core-shell CoFe2O4@MnFe2O4 nanoparticles for in vivo theranostics. Nanomaterials 10(5), 907 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Yang, R. Li, C. Zhu, J. Pei, Preparation, characterization and photocatalytic degradation efficacy of bismuth oxide under visible and ultraviolet light. J. Mater. Res. 36, 2936–2949 (2021)

    CAS  Google Scholar 

  16. T. Giordani, J. Dose, Y. Kuskoski, J. Scheltz, A.S. Mangrich, J.M.M. de Mello, L.L. Silva, R.C.F. Zeferino, M. Zaneth, M.A. Fiori, G.L. Colpani, Photocatalytic degradation of propranolol hydrochloride using Nd–TiO2 nanoparticles under UV and visible light. J. Mater. Res. 36, 1584–1599 (2021)

    CAS  Google Scholar 

  17. C. Chen, Z. Li, Y. Guo, L. Ling, Y. Zhang, L. Ren, M. Wu, A Z-scheme iron-based hollow microsphere with enhanced photocatalytic performance for tetracycline degradation. J. Mater. Res. 36, 1600–1613 (2021)

    CAS  Google Scholar 

  18. K. Wei, B. Wang, J. Hu, F. Chen, Q. Hao, G. He, Y. Wang, W. Li, J. Liu, Q. He, Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core–shell structure. RSC Adv. 9, 11377 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Ravi, S. Iqbal, A. Ghosal, S. Ahmed, Novel mesoporous trimetallic strontium magnesium ferrite (Sr0.3Mg0.7Fe2O4) nanocubes: a selective and recoverable magnetic nanoadsorbent for Congo red. J. Alloys Compd. 791, 336–347 (2019)

    CAS  Google Scholar 

  20. A. Wang, K. Zhou, X. Liu, F. Liu, Q. Chen, Development of Mg–Al–La tri-metal mixed oxide entrapped in alginate for removal of fluoride from wastewater. RSC Adv. 7(50), 31221–31229 (2017)

    CAS  Google Scholar 

  21. V.L. Chandraboss, Design and synthesis of Core-Shell Zn@SiO2 nanoparticles and its photocatalytic performance. Mater. Today Proc. 36, 907–913 (2021)

    CAS  Google Scholar 

  22. T. Kaewmanee, A. Phuruangrat, T. Thongtemd, S. Thongtem, Solvothermal synthesis of Mn–Zn Ferrite(core)@SiO2(shell)/BiOBr0.5Cl0.5 nanocomposites used for adsorption and photocatalysis combination. Ceram. Int. 46(3), 3655–3662 (2020)

    CAS  Google Scholar 

  23. V.L. Chandraboss, S. Senthilvelan, L. Natanapatham, M. Murugavelu, B. Loganathan, B. Karthikeyan, Photocatalytic effect of Ag and Ag/Pt doped silicate non-crystalline material on methyl violet-experimental and theoretical studies. J. Non-Cryst. Solids 368, 23–28 (2013)

    CAS  Google Scholar 

  24. B. Loganathan, V.L. Chandraboss, M. Murugavelu, S. Senthilvelan, B. Karthikeyan, Synthesis and characterization of multimetallic-core and siliceous shell Au/Pt/ Ag@SiO2 Sol-Gel derived nanocomposites. J. Sol-Gel Sci. Technol. 74, 1–14 (2015)

    CAS  Google Scholar 

  25. Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen, P. Li, L. Wu, Q. Zhang, One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 12, 8579–8587 (2018)

    CAS  PubMed  Google Scholar 

  26. S. Tiwari, M. Kaur, Mechanistic insight into structural and adsorptive properties of coreshell reversal nanocomposites of rice husk silica and magnesium ferrite. Adv Powder Technol. 31, 2315–2326 (2020)

    CAS  Google Scholar 

  27. M. Ai, J.W. Zhang, Y.W. Wu, L. Pan, Role of vacancies in photocatalysis: a review of recent progress. Chem. Asian J. 15, 1–21 (2020)

    Google Scholar 

  28. E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, A.Z. Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst. Sci. Total Environ. 724, 138167 (2020)

    CAS  PubMed  Google Scholar 

  29. S. Thankachan, S. Xavier, B. Jacob, E.M. Mohammed, A comparative study of structural, electrical and magnetic properties of magnesium ferrite nanoparticles synthesized by sol-gel and co-precipitation techniques. J. Exp. Nanosci. 8, 347–357 (2013)

    CAS  Google Scholar 

  30. B.Y. Song, Y. Eom, T.G. Lee, Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites. Appl. Surf. Sci. 257, 4754–4759 (2011)

    CAS  Google Scholar 

  31. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30, 1–14 (2017)

    CAS  Google Scholar 

  32. Y. Jin, L.Y. Kang, L. Yu, L. Jun-Ping, Synthesis and characterization of magnetic TiO2/SiO2/NiFe2O4 composite photocatalysts. J. Chem. Res. Chin. Univ. 26, 278–282 (2010)

    Google Scholar 

  33. H. Hamad, M.A.E. Latif, A.E.-H. Kashyout, W. Sadik, M. Feteh, Synthesis and characterization of core/shell/ shell magnetic (CoFe2O4/SiO2/TiO2) nanocomposite and TiO2 nanoparticle for photocatalytic activity under UV and visible irradiation. New J. Chem. 39, 3116–3128 (2015)

    CAS  Google Scholar 

  34. J. Kaur, M. Kaur, Comparative studies on structural, magnetic and adsorptive properties of fused Fe2O3@SiO2 and rattle shaped SiO2@Fe2O3 nanocomposites with reversal of core-shell. Mater. Chem. Phys. 242, 122548 (2020)

    CAS  Google Scholar 

  35. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Preparation and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCaxFe2-xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J Mater 2014, 1–9 (2014)

    Google Scholar 

  36. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130, 28–29 (2008)

    CAS  PubMed  Google Scholar 

  37. M. Patrycja, P. Michał, M. Wojciech, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis Spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018)

    Google Scholar 

  38. J.I. Pankove, Optical Processes in Semiconductors (Courier Corporation, Chelmsford, 1971)

    Google Scholar 

  39. K. Tanaka, S. Nakashima, K. Fujita, K. Hirao, High magnetization and the Faraday effect for ferrimagnetism zinc ferrite thin film. J. Phys. Condens. 15, L469–L474 (2003)

    CAS  Google Scholar 

  40. M. Kaur, M. Kaur, D. Singh, A.C. Oliveira, V.K. Garg, V.K. Sharma, Synthesis of CaFe2O4-NGO nanocomposite for effective removal of heavy metal ion and photocatalytic degradation of organic pollutants. Nanomaterials 11(1471), 1–24 (2021)

    CAS  Google Scholar 

  41. A.B. Rangamagar, B.P. Chhetri, T.A. Parameswaran, F. Watanabe, A. Sinha, J.W. Kim, V. Saini, A.S. Biris, A. Ghosh, Nanocrystalline cellulose-derived nitrogen doped carbonaceous material for rapid mineralization of nitrophenols under visible light. ACS Omega 3, 8111–8121 (2018)

    Google Scholar 

  42. L. Bo, Y. Hu, Z. Zhang, J. Tong, Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g-C3N4 composite under visible light. Polyhedron 168, 94–100 (2019)

    CAS  Google Scholar 

  43. J. Luo, X. Zhou, X. Ning, L. Zhen, L. Ma, X. Xu, Z. Huang, J. Liang, Synthesis and characterization of Z-scheme In2S3/Ag2CrO4 composites with enhanced visible-light photocatalytic performance. New. J. Chem. 41, 845–856 (2017)

    CAS  Google Scholar 

  44. S. Liu, X. Jiang, G.I.N. Waterhouse, Z.M. Zhang, L. Yu, Construction of Z-scheme titanium-MOF/plasmonic silver nanoparticle/ NiFe layered double hydroxide photocatalysts with enhanced dye and antibiotic degradation activity under visible light. Sep. Purif. Technol. 278, 119525 (2022)

    CAS  Google Scholar 

  45. Z. Hasan, Y.S. Ok, J. Rinklebe, Y.F. Tsang, D.-W. Cho, H. Song, N doped cobalt-carbon composite for reduction of p-nitrophenol and pendimethalin. J. Alloys Compd. 703, 118–124 (2017)

    CAS  Google Scholar 

  46. Y. Tang, X. Zhang, Y. Ma, X. Wang, C. Su, D. Zhang, X. Pu, Y. Gang, One-dimensional core-shell Zn0.1Cd0.9S/SnIn4S8 heterojunction for enhanced visible light photocatalytic degradation. Sep. Purif. Technol. 230, 115896 (2020)

    CAS  Google Scholar 

  47. A. Shahnazi, M.R. Nabid, R. Sedghi, B. Heidari, A thermosensitive molecularly imprinted poly-NIPAM coated MWCNTs/TiO2 photocatalyst for the preferential removal of pendimethalin pesticide from wastewater. J. Photochem. Photobiol. A 402, 112802 (2020)

    CAS  Google Scholar 

  48. B.N. Patil, S.A. Acharya, Preparation of ZnS/CdS core-shell nanocomposite and its photocatalytic behaviour for dye degradation. AIP Conf. Proc. 2220, 020178 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JKG: Data curation, Methodology, Writing—Original draft, Writing—review and editing. MK: Writing—Original draft, Writing—review and editing, Supervision. MKU: Validation, formal analysis and editing. ACO: Mӧssbauer studies, Validation, formal analysis and editing. VKG: Mӧssbauer studies, Validation, formal analysis and editing. VKS: Writing—review and editing, Supervision.

Corresponding authors

Correspondence to Manpreet Kaur or Virender K. Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Virender Sharma was a guest editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 695 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, J.K., Kaur, M., Ubhi, M.K. et al. Structural, magnetic, and photocatalytic properties of core–shell reversal nanocomposites of titanium-doped strontium ferrite and silica. Journal of Materials Research 38, 1019–1034 (2023). https://doi.org/10.1557/s43578-022-00855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00855-0

Keywords

Navigation