Skip to main content
Log in

Reversible electrospun fibers containing spiropyran for acid and base vapor sensing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Among the various possible structural modifications spiropyrans may be subject to, ones containing alkyl sulfonates groups are commonly classified as photoacids. Both alkyl sulfonates spiropyrans named SON and SOH were structurally characterized and their acido- and photochromic properties were studied by UV–visible spectroscopy. Electrospun poly-ε-caprolactone (PCL) fibers were obtained, in which SON or SOH were incorporated with the goal of detecting acid and base vapors. PCL fibers containing the derivatives SON and SOH were successfully obtained (0.8 μm range), capable of acting as colorimetric vapor sensors according to the acidochromic properties of the spiropyrans. PCL-SON fibers presented quick vapor sensing capability, with colorimetric change within 10 s of exposure. Scanning electronic microscopy was crucial to characterize the morphology of these fibers before and after being used in the sensing process. This material could be reversibly reutilized in the sensing of acids and bases vapors according to the results presented.

Graphical abstract

Macroscopic color change for electrospun fibers based on acid or base vapors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. L. Kortekaas, W.R. Browne, The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 48(12), 3406 (2019)

    Article  CAS  Google Scholar 

  2. M. Natali, L. Soldi, S. Giordani, A photoswitchable Zn (II) selective spiropyran-based sensor. Tetrahedron 66(38), 7612 (2010)

    Article  CAS  Google Scholar 

  3. F. Khakzad, A.R. Mahdavian, H. Salehi-Mobarakeh, A. Rezaee Shirin-Abadi, M. Cunningham, Redispersible PMMA latex nanoparticles containing spiropyran with photo-, pH- and CO2- responsivity. Polymer (Guild) 101, 274 (2016)

    Article  CAS  Google Scholar 

  4. F.B. Miguez, I.F. Reis, L.P. Dutra, I.M.S. Silva, T. Verano-Braga, J.F. Lopes, F.B. De Sousa, Electronic investigation of light-induced reversible coordination of Co(II)/spiropyran complex. Dye. Pigment. 171, 107757 (2019)

    Article  CAS  Google Scholar 

  5. V.I. Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 104(5), 2751 (2004)

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Chen, Y. Lin, X. Fang, Y. Xu, Y. Ruan, W. Weng, Spiropyran as a mechanochromic probe in dual cross-linked elastomers. Macromolecules 47(19), 6783 (2014)

    Article  CAS  Google Scholar 

  7. M. Bletz, U. Pfeifer-Fukumura, U. Kolb, W. Baumann, Ground-and first-excited-singlet-state electric dipole moments of some photochromic spirobenzopyrans in their spiropyran and merocyanine form. J. Phys. Chem. A 106(10), 2232 (2002)

    Article  CAS  Google Scholar 

  8. I. Panaiotov, S. Taneva, A. Bois, F. Rondelez, Photoinduced dilatational motion in monolayers of poly(methyl methacrylate) having benzospiropyran side groups. Macromolecules 24(15), 4250 (1991)

    Article  CAS  Google Scholar 

  9. Z. Shi, P. Peng, D. Strohecker, Y. Liao, Long-lived photoacid based upon a photochromic reaction. J. Am. Chem. Soc. 133(37), 14699 (2011)

    Article  CAS  Google Scholar 

  10. M. Schnurbus, M. Kabat, E. Jarek, M. Krzan, P. Warszynski, B. Braunschweig, Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36(25), 6871 (2020)

    Article  CAS  Google Scholar 

  11. C. Berton, D.M. Busiello, S. Zamuner, R. Scopelliti, F. Fadaei-Tirani, K. Severin, C. Pezzato, Light-switchable buffers. Angew. Chemie Int. Ed. 60(40), 21737 (2021)

    Article  CAS  Google Scholar 

  12. G. Kocak, C. Tuncer, V. Bütün, PH-responsive polymers. Polym. Chem. 8(1), 144 (2017)

    Article  CAS  Google Scholar 

  13. M. Wei, Y. Gao, X. Li, M.J. Serpe, Stimuli-responsive polymers and their applications. Polym. Chem. 8(1), 127 (2017)

    Article  CAS  Google Scholar 

  14. M. Sponchioni, U. Capasso Palmiero, D. Moscatelli, Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 102, 589 (2019)

    Article  CAS  Google Scholar 

  15. S. Pedron, S. Van Lierop, P. Horstman, R. Penterman, D.J. Broer, E. Peeters, Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv. Funct. Mater. 21(9), 1624 (2011)

    Article  CAS  Google Scholar 

  16. A.S. Hoffman, Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 65(1), 10 (2013)

    Article  CAS  Google Scholar 

  17. A. Richter, G. Paschew, S. Klatt, J. Lienig, K.F. Arndt, H.J.P. Adler, Review on hydrogel-based pH sensors and microsensors. Sensors 8(1), 561 (2008)

    Article  CAS  Google Scholar 

  18. M. Mrinalini, S. Prasanthkumar, Recent advances on stimuli-responsive smart materials and their applications. ChemPlusChem 84(8), 1103 (2019)

    Article  CAS  Google Scholar 

  19. F. Arab Hassani, Q. Shi, F. Wen, T. He, A. Haroun, Y. Yang, Y. Feng, C. Lee, Smart materials for smart healthcare—moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 1, 92 (2020)

    Article  Google Scholar 

  20. F.B. De Sousa, F. Alexis, S. Giordani, Editorial: photochromic materials: design and applications. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.720172

    Article  Google Scholar 

  21. M.E. Genovese, A. Athanassiou, D. Fragouli, Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. J. Mater. Chem. A 3(44), 22441 (2015)

    Article  CAS  Google Scholar 

  22. J. Keyvan Rad, A.R. Ghomi, K. Karimipour, A.R. Mahdavian, Progressive readout platform based on photoswitchable polyacrylic nanofibers containing spiropyran in photopatterning with instant responsivity to acid-base vapors. Macromolecules 53(5), 1613 (2020)

    Article  CAS  Google Scholar 

  23. A. Steinegger, O.S. Wolfbeis, S.M. Borisov, Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem. Rev. 120(22), 12357 (2020)

    Article  CAS  Google Scholar 

  24. R. Avolio, A. Grozdanov, M. Avella, J. Barton, M. Cocca, F. De Falco, A.T. Dimitrov, M.E. Errico, P. Fanjul-Bolado, G. Gentile, P. Paunovic, A. Ribotti, P. Magni, Review of pH sensing materials from macro- to nano-scale: recent developments and examples of seawater applications. Crit. Rev. Environ. Sci. Technol. (2020). https://doi.org/10.1080/10643389.2020.1843312

    Article  Google Scholar 

  25. M.E. Genovese, E. Colusso, M. Colombo, A. Martucci, A. Athanassiou, D. Fragouli, Acidochromic fibrous polymer composites for rapid gas detection. J. Mater. Chem. A 5(1), 339 (2017)

    Article  CAS  Google Scholar 

  26. R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43(1), 148 (2014)

    Article  CAS  Google Scholar 

  27. S. Huang, K. Wang, S. Wang, Y. Wang, M. Wang, Highly fluorescent polycaprolactones with tunable light emission wavelengths across visible to NIR spectral window. Adv. Mater. Interfaces 3(17), 1600259 (2016)

    Article  Google Scholar 

  28. R.C.L. Machado, F. Alexis, F.B. De Sousa, Nanostructured and photochromic material for environmental detection of metal ions. Molecules 24(23), 4243 (2019)

    Article  CAS  Google Scholar 

  29. I.F. Reis, F.B. Miguez, C.A.A. Vargas, T.G. Menzonatto, I.M.S. Silva, T. Verano-Braga, J.F. Lopes, T.A.S. Brandão, F.B. De Sousa, Structural and electronic characterization of a photoresponsive lanthanum(III) complex incorporated into electrospun fibers for phosphate ester catalysis. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c03571

    Article  Google Scholar 

  30. C. Berton, D.M. Busiello, S. Zamuner, E. Solari, R. Scopelliti, F. Fadaei-Tirani, K. Severin, C. Pezzato, Thermodynamics and kinetics of protonated merocyanine photoacids in water. Chem. Sci. 11(32), 8457 (2020)

    Article  CAS  Google Scholar 

  31. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Elsevier, Amsterdam, 1991), pp. 477–490

    Google Scholar 

  32. A.P. Kotula, C.R. Snyder, K.B. Migler, Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer (Guildf) 117, 1 (2017)

    Article  CAS  Google Scholar 

  33. Y. Liao, Design and applications of metastable-state photoacids. Acc. Chem. Res. 50(8), 1956 (2017)

    Article  CAS  Google Scholar 

  34. J. Morais de Faria, L. Alkimin Muniz, J.F.Z. Netto, D. Scheres Firak, F.B. De Sousa, F. da Silva Lisboa, Application of a hybrid material formed by layered zinc hydroxide chloride modified with spiropyran in the adsorption of Ca2+ from water. Colloids Surfaces A Physicochem. Eng. Asp. 631, 127738 (2021)

    Article  CAS  Google Scholar 

  35. A. Julià-López, J. Hernando, D. Ruiz-Molina, P. González-Monje, J. Sedó, C. Roscini, Temperature-controlled switchable photochromism in solid materials. Angew. Chem. Int. Ed. 55(48), 15044 (2016)

    Article  Google Scholar 

  36. M.C.R. Simões, S.M. Cragg, E. Barbu, F.B. De Sousa, The potential of electrospun poly(methyl methacrylate)/polycaprolactone core–sheath fibers for drug delivery applications. J. Mater. Sci. 54(7), 5712 (2019)

    Article  Google Scholar 

  37. L.M. Jenkins, A.M. Donald, Contact angle measurements on fibers in the environmental scanning electron microscope. Langmuir 15, 7829 (1999)

    Article  CAS  Google Scholar 

  38. N. Abeyrathna, Y. Liao, Stability of merocyanine-type photoacids in aqueous solutions. J. Phys. Org. Chem. 30(8), e3664 (2017)

    Article  Google Scholar 

  39. R. Xu, Methods to resolve mobility from electrophoretic laser light scattering measurement. Langmuir 9(11), 2955 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq (Grant Nos. 431133/2018-2; 437418/2018-9; 308278/2020-8; 309720/2020-6 and scholarship 157706/2019-2) and FAPEMIG (Grant Nos. APQ-01293-14; APQ 02052/21 and APQ-00210-21) and FINEP (CT-INFRA 01/2013-REF 0633/13). This work was also supported by Biosmart Nanotechnology Ltda agreement with UNIFEI (process number 23088.015061/2019-72). Authors would like to thank LIPq-LAREMAR facilities from Department of Chemistry from UFMG for NMR support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico B. De Sousa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5088 KB)

Supplementary file2 (MPEG 16848 KB) Movie S1 Reversibility acid and base vapors detection for PCL-SON

Supplementary file3 (MPEG 26044 KB) Movie S2 Reversibility acid and base vapors detection for PCL-SOH

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguez, F.B., Moreira, O.B.O., de Oliveira, M.A.L. et al. Reversible electrospun fibers containing spiropyran for acid and base vapor sensing. Journal of Materials Research 38, 547–556 (2023). https://doi.org/10.1557/s43578-022-00842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00842-5

Keywords

Navigation