Skip to main content
Log in

New iron-containing MFI-type zeolites in the catalytic conversion of ethanol, propane, and N2O

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For the first time, two groups of iron-containing zeolites (MFI type) of general compositions (Hx)[Fex3+Si12−x4+O24] (FeHZSM-5, module Si/Fe = 34; hydrothermal method) and Fe2O3/(Hx)[Al3+xSi4+12−xO24] × wH2O with the Fe2O3 polycrystalline initial content 10, 35, 50 wt%. (Fe2O3/AlHZSM-5, Si/Al = 12, 25, 40; precipitation from the solutions and gas phase) were synthesized and studied. It was found (XRD, EXAFS/XANES, XPS, FTIR spectroscopies) that FeHZSM-5 and Fe2O3/AlHZSM-5 differ in surface compositions, the oxygen environment around Fe3+ ions, and the iron oxide state. Amorphous or nanocrystallized iron oxide phases uniformly distributed over the zeolite particles surface with the formation of Fe–O–H–O–Si(Al) bonds. In the reaction of ethanol, propane, and N2O conversion composites, Fe2O3/AlHZSM-5 are more active than FeHZSM-5 in the low-temperature region. The conversion degree of ethanol, propane, and N2O is suppressed with an increase in the zeolite module Si/Al, the initial Fe2O3 content, and when replacing nanosized Fe2O3 with the amorphous one in the composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. W. Zhang, B. Wang, J. Yang, P. Rui, N. Fan, W. Liao, X. Shu, Zeolite Fe-MFI as catalysts in the selective liquid-phase dehydration of 1-phenylethanol. Catal. Commun. 110, 97–101 (2018). https://doi.org/10.1016/j.catcom.2018.03.018

    Article  CAS  Google Scholar 

  2. Y. Lai, G. Veser, The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization. Catal. Sci. Technol. 6(14), 5440–5452 (2016). https://doi.org/10.1039/c5cy02258d

    Article  CAS  Google Scholar 

  3. J. Pérez-Ramírez, G. Mul, F. Kapteijn, J. Moulijn, A. Overweg, A. Doménech, A. Ribera, I. Arends, Physicochemical characterization of isomorphously substituted FeZSM-5 during activation. J. Catal. 207(1), 113–126 (2002). https://doi.org/10.1006/jcat.2002.3511

    Article  CAS  Google Scholar 

  4. P.R. Anizelli, J.P.T. Baú, D.F. Valezi, L.C. Canton, C.E.A. Carneiro, E. Di Mauro, D.A.M. Zaia, Adenine interaction with and adsorption on Fe-ZSM-5 zeolites: a prebiotic chemistry study using different techniques. Microporous Mesoporous Mater. 226, 493–504 (2016). https://doi.org/10.1016/j.micromeso.2016.02.004

    Article  CAS  Google Scholar 

  5. S.A. Axon, K.K. Fox, S.W. Carr, J. Klinowski, EXAFS studies of iron-substituted zeolite ZSM-5. Chem. Phys. Lett. 189(1), 1–6 (1992). https://doi.org/10.1016/0009-2614(92)85143-X

    Article  CAS  Google Scholar 

  6. S.H. Choi, B.R. Wood, A.T. Bell, M.T. Janicke, K.C. Ott, X-ray absorption fine structure analysis of the local environment of Fe in Fe/Al-MFI. J. Phys. Chem. B. 108, 8970–8975 (2004). https://doi.org/10.1021/jp040065e

    Article  CAS  Google Scholar 

  7. F. Heinrich, C. Schmidt, E. Loffler, M. Menzel, W. Grunert, Fe–ZSM-5 catalysts for the selective reduction of NO by isobutane—the problem of the active sites. J. Catalysis 212, 157–172 (2002). https://doi.org/10.1006/jcat.2002.3775

    Article  CAS  Google Scholar 

  8. E.A. Urquieta-González, L. Martins, R.P.S. Peguin, M.S. Batista, Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mater. Res. 5(3), 321–327 (2002). https://doi.org/10.1590/S1516-14392002000300017

    Article  Google Scholar 

  9. J.S. de Oliveira, M.A. Mazutti, E.A. Urquieta-González, E.L. Foletto, S.L. Jahn, Preparation of mesoporous Fe2O3-supported ZSM-5 zeolites by carbon-templating and their evaluation as photo-fenton catalysts to degrade organic pollutant. Mater. Res. 19(6), 1399–1406 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0367

    Article  Google Scholar 

  10. X. Yang, X. Cheng, A.A. Elzatahry, J. Chen, A. Alghamdi, Y. Deng, Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions. Chin. Chem. Lett. 20, 324–330 (2019). https://doi.org/10.1016/j.cclet.2018.06.026

    Article  CAS  Google Scholar 

  11. P. Baile, L. Vidal, M.A. Aguirre, A. Canals, A modified ZSM-5 zeolite/Fe2O3 composite as sorbent for magnetic dispersive solid-phase microextraction of cadmium, mercury and lead from urine samples prior to inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 33, 856–866 (2018). https://doi.org/10.1039/C7JA00366H

    Article  CAS  Google Scholar 

  12. M.S. Batista, M. Wallau, E.A. Urquieta-González, Species active in the selective catalytic reduction of NO with Iso-butane on Iron-exchanged ZSM-5 zeolites. Braz. J. Chem. Eng. 22(3), 341–351 (2005). https://doi.org/10.1590/S0104-66322005000300003

    Article  CAS  Google Scholar 

  13. N. Richards, E. Nowicka, J.H. Carter, D.J. Morgan, N.F. Dummer, S. Golunski, G.J. Hutchings, Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Top. Catal. 61(18), 1983–1992 (2018). https://doi.org/10.1007/s11244-018-1024-0

    Article  CAS  Google Scholar 

  14. K. Jíša, J. Nováková, M. Schwarze, A. Vondrová, S. Sklenák, Z. Sobalik, Role of the Fe-zeolite structure and iron state in the N2O decomposition: comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts. J. Catal. 262(1), 27–34 (2009). https://doi.org/10.1016/j.jcat.2008.11.025

    Article  CAS  Google Scholar 

  15. J. Lu, Y. Liu, N. Li, Fe-modified HZSM-5 catalysts for ethanol conversion into light olefins. J. Nat. Gas Chem. 20(4), 423–427 (2011). https://doi.org/10.1016/s1003-9953(10)60193-4

    Article  CAS  Google Scholar 

  16. Y.K. Chow, N.F. Dummer, J.H. Carter, C. Williams, G. Shaw, D.J. Willock, G.J. Hutchings, Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catal. Sci. Technol. 8(1), 154–163 (2018). https://doi.org/10.1039/c7cy01769c

    Article  CAS  Google Scholar 

  17. G.M. Kuz’micheva, R.D. Svetogorov, E.V. Khramov, G.V. Kravchenko, L.G. Bruk, ZYu. Pastukhova, E.B. Markova, A.I. Zhukova, S.G. Chuklina, A.V. Dorokhov, Titanosilicalites (MFI-type): composition, statistical and local structure, catalytic properties. Microporous Mesoporous Mater. 326, 111377–111391 (2021). https://doi.org/10.1016/j.micromeso.2021.111377

    Article  CAS  Google Scholar 

  18. G.M. Kuz’micheva, E.N. Domoroshchina, G.V. Kravchenko, Design of MFI type aluminum- and titanium-containing zeolites (review). Crystals 11(11), 1451–1500 (2021). https://doi.org/10.3390/cryst11121451

    Article  CAS  Google Scholar 

  19. M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th edn. (Elsevier, Amsterdam, 2001)

    Google Scholar 

  20. T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, E.I. Solomon, A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119(27), 6297–6314 (1997). https://doi.org/10.1021/ja964352a

    Article  CAS  Google Scholar 

  21. A.L. Roe, D.J. Schneider, R.J. Mayer, J.W. Pyrz, J. Widom, L. Que, X-ray absorption spectroscopy of iron-tyrosinate proteins. J. Am. Chem. Soc. 106(6), 1676–1681 (1984). https://doi.org/10.1021/ja00318a021

    Article  CAS  Google Scholar 

  22. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina et al., Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J. Catal 158(2), 486–501 (1996). https://doi.org/10.1006/jcat.1996.0048

    Article  CAS  Google Scholar 

  23. T. Yamamoto, Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom. 37(6), 572–584 (2008). https://doi.org/10.1002/xrs.1103

    Article  CAS  Google Scholar 

  24. L. Schöttner, A. Nefedov, C. Yang, S. Heissler, Y. Wang, C. Wöll, Structural evolution of α-Fe2O3 (0001) surfaces under reduction conditions monitored by infrared spectroscopy. Front. Chem. 7, 451 (2019). https://doi.org/10.3389/fchem.2019.00451

    Article  CAS  Google Scholar 

  25. G.D. Pirngruber, P.K. Roy, N. Weiher, An in situ X-ray absorption spectroscopy study of N2O decomposition over Fe-ZSM-5 prepared by chemical vapor deposition of FeCl3. J. Phys. Chem. B 108(36), 13746–13754 (2004). https://doi.org/10.1021/jp048346+

    Article  CAS  Google Scholar 

  26. A.A. Battiston, J.H. Bitter, F.M.F. de Groot, A.R. Overweg, O. Stephan, J.A. van Bokhoven, P.J. Kooyman, C. van der Spek, G. Vankó, D.C. Koningsberger, Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM-5 obtained by chemical vapor deposition of FeCl3. J. Catal. 213(2), 251–271 (2003). https://doi.org/10.1016/S0021-9517(02)00051-9

    Article  CAS  Google Scholar 

  27. A. Boubnov, H.W.P. Carvalho, D.E. Doronkin, T. Günter, E. Gallo, A.J. Atkins et al., Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by Operando HERFD-XANES and valence-to-core x-ray emission spectroscopy. J. Am. Chem. Soc. 136(37), 13006–13015 (2014). https://doi.org/10.1021/ja5062505

    Article  CAS  Google Scholar 

  28. NIST X-Ray Photoelectron Spectroscopy (XPS) Database, Version 3.5

  29. G.M. Kuz’micheva, E.N. Domoroshchina, Composition, structure and properties of zeolites HZSM-5 and composites based on them with functional nanosized anatase (Review). Materials. Manuscript ID: materials-1075763

  30. S. Sobhanardakani, A. Jafari, R. Zandipak, A. Meidanchi, Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf. Environ. Prot. 120, 348–357 (2018). https://doi.org/10.1016/j.psep.2018.10.002

    Article  CAS  Google Scholar 

  31. L. Shirazi, E. Jamshidi, M.R. Ghasemi, The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. 43(12), 1300–1306 (2008). https://doi.org/10.1002/crat.200800149

    Article  CAS  Google Scholar 

  32. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008). https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  33. G. Giecko, T. Borowiecki, W. Gac, J. Kruk, Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catal. Today 137(2–4), 403–409 (2008). https://doi.org/10.1016/j.cattod.2008.02.008

    Article  CAS  Google Scholar 

  34. A. Abdelkader, H. Daly, Y. Saih, K. Morgan, M.A. Mohamed, S.A. Halawy, C. Hardacre, Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides. Int. J. Hydrogen Energy 38(20), 8263–8275 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.009

    Article  CAS  Google Scholar 

  35. Y. Yang, H. Zhang, Y. Yan, The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol. R. Soc. Open Sci. 5(3), 171731–171745 (2018). https://doi.org/10.1098/rsos.171731

    Article  CAS  Google Scholar 

  36. R. Svetogorov, P. Dorovatovskii, V. Lazarenko, Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov synchrotron radiation Source. Cryst. Res. Technol 55(5), 1900184 (2020). https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  37. V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229(5), 345–352 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  38. D.H. Olson, G.T. Kokotailo, S.L. Lawton, W.M. Meier, Crystal-structure and structure-related properties of ZSM-5. J. Phys. Chem. 85(15), 2238–2243 (1981)

    Article  CAS  Google Scholar 

  39. A.I. Zhukova, S.G. Chuklina, S.A. Maslenkova, Study of Cu modified Zr and Al mixed oxides in ethanol conversion: the structure-catalytic activity relationship. Catal. Today 379, 159–165 (2021). https://doi.org/10.1016/j.cattod.2021.02.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Ministry of Science and Higher Education of the Russian Federation, Grant Number 0706-2020-0026. FeHZSM-5 synthesis was carried out with the support of the governmental order for Boreskov Institute of Catalysis (Project AAAA-A21-121011890074-4). X-ray photoelectron spectroscopy measurements were performed in the “Physical Surface Investigation Methods” Resource Center of St. Petersburg State University Science Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiya A. Gainanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2567 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainanova, A.A., Kuz’micheva, G.M., Pirutko, L.V. et al. New iron-containing MFI-type zeolites in the catalytic conversion of ethanol, propane, and N2O. Journal of Materials Research 38, 532–546 (2023). https://doi.org/10.1557/s43578-022-00840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00840-7

Keywords

Navigation