Skip to main content
Log in

Biomass-derived porous carbon-protected silver nanoflowers construction of long-term stable SERS substrate for ultrasensitive detection of organic pollution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biomass-derived porous carbon (PC) loaded with precious metals have a synergistic enhancement effect on surface-enhanced Raman scattering (SERS). In this paper, PC containing various functional groups and large specific surface area, good stability and certain biocompatibility were prepared using tomato skins and introduced into the preparation of Ag nanoflowers (NFs) SERS substrates. Rhodamine 6G (R6G) was used as the Raman probe molecule to evaluate the sensing performance of Ag NFs@PC. The results showed that the stable dispersion and protective effect of PC on Ag NPs significantly improved the sensitivity and long-term stability of traditional Ag NFs. In practical application, Ag NFs@PC was further used to successfully achieve the quantitative analysis of trace methylene blue (10 ppt) and malachite green (10 ppt) in a lake water system. Therefore, SERS sensor Ag NFs@PC is expected to become a promising candidate sensor for detecting in the field of environment and food monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. X. Dong, H. Gu, J. Kang, X. Yuan, J. Wu, Effects of the surface modification of silver nanoparticles on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid. J. Mol. Struct. 984, 396 (2010). https://doi.org/10.1016/j.molstruc.2010.10.014

    Article  CAS  Google Scholar 

  2. G. Yang, X. Fang, Q. Jia, H. Gu, Y. Li, C. Han, L. Qu, Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Mikrochim Acta (2020). https://doi.org/10.1007/s00604-020-04262-2

    Article  Google Scholar 

  3. A. Otto, The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497 (2005). https://doi.org/10.1002/jrs.1355

    Article  CAS  Google Scholar 

  4. K. Katrin, Y. Wang, K. Harald, L.T. Perelman, I. Irving, R.D. Ramachandra, S.F. Michael, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  Google Scholar 

  5. J. Zeng, Y. Zhang, T. Zeng, R. Aleisa, Z. Qiu, Y. Chen, J. Huang, D. Wang, Z. Yan, Y. Yin, Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today (2020). https://doi.org/10.1016/j.nantod.2020.100855

    Article  Google Scholar 

  6. A.I. Perez-Jimenez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 11(18), 4563–4577 (2020). https://doi.org/10.1039/d0sc00809e

    Article  CAS  Google Scholar 

  7. J. Zhang, Y. Wang, X. Zhang, W. Xie, J. Li, Z. Wang, Study of the fabrication of gold nanoparticle-graphene-arrayed micro/nanocavities as SERS substrates compared to two different angles of triangular pyramid tips. Langmuir 38, 4894 (2022). https://doi.org/10.1021/acs.langmuir.2c00187

    Article  CAS  Google Scholar 

  8. C. Caro, P. Quaresma, E. Pereira, J. Franco, L.M. Pernia, M.L. Garcia-Martin, J.L. Royo, J.M. Oliva-Montero, P.J. Merkling, A.P. Zaderenko, D. Pozo, R. Franco, Synthesis and characterization of elongated-shaped silver nanoparticles as a biocompatible anisotropic SERS probe for intracellular imaging: theoretical modeling and experimental verification. Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9020256

    Article  Google Scholar 

  9. S. Rodal-Cedeira, A. Vazquez-Arias, G. Bodelon, A. Skorikov, S. Nunez-Sanchez, A. Laporta, L. Polavarapu, S. Bals, L.M. Liz-Marzan, J. Perez-Juste, I. Pastoriza-Santos, An expanded surface-enhanced Raman scattering tags library by combinatorial encapsulation of reporter molecules in metal nanoshells. ACS Nano 14, 14655 (2020). https://doi.org/10.1021/acsnano.0c04368

    Article  CAS  Google Scholar 

  10. R. John, R.L.B. Lombardi, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734 (2008)

    Google Scholar 

  11. P.D. Nallathamby, T. Huang, X.H. Xu, Design and characterization of optical nanorulers of single nanoparticles using optical microscopy and spectroscopy. Nanoscale 2, 1715 (2010). https://doi.org/10.1039/c0nr00303d

    Article  CAS  Google Scholar 

  12. S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042 (2017). https://doi.org/10.1039/c7cs00238f

    Article  CAS  Google Scholar 

  13. J. Reguera, J. Langer, A.D. Jimenez, L.M. Liz-Marzan, Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 46, 3866 (2017). https://doi.org/10.1039/c7cs00158d

    Article  CAS  Google Scholar 

  14. B.N. Khlebtsov, V.A. Khanadeev, A.M. Burov, R.E.C. Le, N.G. Khlebtsov, Reexamination of surface-enhanced Raman scattering from gold nanorods as a function of aspect ratio and shape. J. Phys. Chem. C 124, 10647 (2020). https://doi.org/10.1021/acs.jpcc.0c00991

    Article  CAS  Google Scholar 

  15. P. Rodriguez-Zamora, C.A. Cordero-Silis, J. Fabila, J.C. Luque-Ceballos, F. Buendia, A. Heredia-Barbero, I.L. Garzon, Interaction mechanisms and interface configuration of cysteine adsorbed on gold, silver, and copper nanoparticles. Langmuir 38, 5418 (2022). https://doi.org/10.1021/acs.langmuir.1c03298

    Article  CAS  Google Scholar 

  16. Q. Ding, J. Wang, X. Chen, H. Liu, Q. Li, Y. Wang, S. Yang, Quantitative and sensitive SERS platform with analyte enrichment and filtration function. Nano Lett. 20, 7304 (2020). https://doi.org/10.1021/acs.nanolett.0c02683

    Article  CAS  Google Scholar 

  17. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256 (2012). https://doi.org/10.1039/c1cs15166e

    Article  CAS  Google Scholar 

  18. X. Bo, K. Xiang, Y. Zhang, Y. Shen, S. Chen, Y. Wang, M. Xie, X. Guo, Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J. Energy Chem. 39, 1 (2019). https://doi.org/10.1016/j.jechem.2019.01.006

    Article  Google Scholar 

  19. Y. Jiang, J.L. Yue, Q. Guo, Q. Xia, C. Zhou, T. Feng, J. Xu, H. Xia, Highly porous Mn3O4 micro/nanocuboids with in situ coated carbon as advanced anode material for lithium-ion batteries. Small 14, e1704296 (2018). https://doi.org/10.1002/smll.201704296

    Article  CAS  Google Scholar 

  20. B. Ashourirad, M. Demir, R.A. Smith, R.B. Gupta, H.M. El-Kaderi, Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Adv. 8, 12300 (2018). https://doi.org/10.1039/c8ra00546j

    Article  CAS  Google Scholar 

  21. C. Fang, P. Hu, S. Dong, Y. Cheng, D. Zhang, X. Zhang, Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor. J Colloid. Interface Sci. 582, 552 (2021). https://doi.org/10.1016/j.jcis.2020.07.139

    Article  CAS  Google Scholar 

  22. M. Zhu, M. Li, M. Su, J. Liu, B. Liu, Y. Ge, H. Liu, J. Hu, Can “hot spots” be stable enough for surface-enhanced Raman scattering? J. Phys. Chem. C 24, 125 (2021). https://doi.org/10.1021/acs.jpcc.1c03321

    Article  CAS  Google Scholar 

  23. N.H. Kim, W. Hwang, K. Baek, M.R. Rohman, J. Kim, H.W. Kim, J. Mun, S.Y. Lee, G. Yun, J. Murray, J.W. Ha, J. Rho, M. Moskovits, K. Kim, Smart SERS hot spots: single molecules can be positioned in a plasmonic nanojunction using host-guest chemistry. J Am Chem. Soc. 13, 140 (2018). https://doi.org/10.1021/jacs.8b01501

    Article  CAS  Google Scholar 

  24. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y.J. Liu, X. Gao, A. Liu, B. Man, SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Aensor Actuat. B. Chem. (2018). https://doi.org/10.1016/j.snb.2017.11.080

    Article  Google Scholar 

  25. W. Zhang, L. Hao, Q. Lin, C. Lu, Z. Xu, X. Chen, Template-free fabrication and morphology regulation of Ag@carbon composite structure. Mater. Sci. Eng. B. 190, 1 (2014). https://doi.org/10.1016/j.mseb.2014.09.006

    Article  CAS  Google Scholar 

  26. E. Lam, J.H.T. Luong, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 4, 3393 (2014). https://doi.org/10.1021/cs5008393

    Article  CAS  Google Scholar 

  27. J. Wang, Y. Zhao, H. Huang, T. Cong, H. Zhang, K. Liu, L. Pan, Facile synthesis of hybrid silver/porous carbon black substrate for surface-enhanced Raman scattering. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146948

    Article  Google Scholar 

  28. X. Liu, Y. Fu, Q. Sheng, J. Zheng, Au nanoparticles attached Ag@C core-shell nanocomposites for highly selective electrochemical detection of dopamine. Microchem. 146, 509 (2019). https://doi.org/10.1016/j.microc.2019.01.023

    Article  CAS  Google Scholar 

  29. W. Tong, Y. Xie, H. Luo, J. Niu, W. Ran, W. Hu, L. Wang, C. Yao, W. Liu, Y. Zhang, Y. Wang, Phosphorus-rich microorganism-enabled synthesis of cobalt phosphide/carbon composite for bisphenol A degradation through activation of peroxymonosulfate. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122187

    Article  Google Scholar 

  30. W. Zhong, W. Tu, Z. Wang, Z. Lin, A. Xu, X. Ye, D. Chen, B. Xiao, Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. J Energy Chem. 51, 280 (2020). https://doi.org/10.1016/j.jechem.2020.04.035

    Article  Google Scholar 

  31. P.K. Midhun, S. Murugavelh, Experimental investigation and kinetics of tomato peel pyrolysis: performance, combustion and emission characteristics of bio-oil blends in diesel engine. J Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120115

    Article  Google Scholar 

  32. C. Rock, W. Yang, R.F.H. Goodrich-Schneider, Conventional and alternative methods for tomato peeling. Food Eng. Rev. 4, 1 (2012). https://doi.org/10.1007/s12393-011-9047-3

    Article  Google Scholar 

  33. E. Elbadrawy, A. Sello, Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 9, S1010 (2016). https://doi.org/10.1016/j.arabjc.2011.11.011

    Article  CAS  Google Scholar 

  34. Z. Lu, J. Wang, R. Gao, F. Ye, G. Zhao, Sustainable valorisation of tomato pomace: Aa comprehensive review. Trends Food Sci. Technol. 86, 172 (2019). https://doi.org/10.1016/j.tifs.2019.02.020

    Article  CAS  Google Scholar 

  35. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851 (2020). https://doi.org/10.1021/acs.chemrev.9b00248

    Article  CAS  Google Scholar 

  36. B.N. Riswana, T. Wang, Y. Chang, In-situ deposition of silver nanoparticles on silver nanoflowers for ultrasensitive and simultaneous SERS detection of organic pollutants. Microchem. (2020). https://doi.org/10.1016/j.microc.2020.10552010

    Article  Google Scholar 

  37. S. Zhang, X. Liu, N. Huang Q., Lu, M. Liu, H. Li, Y. Zhang, and S. Yao: Sensitive detection of hydrogen peroxide and nitrite based on silver/carbon nanocomposite synthesized by carbon dots as reductant via one step method. Electrochimica Acta 211, (2016) . https://doi.org/10.1016/j.electacta.2016.06.024

  38. S.S. Mozhgan, K. Iraj, and N. Manijeh: Synthesis and characterization of Ag@Carbon core-shell spheres as a novel catalyst for room temperature N-arylation reaction. J. Catal. 361, (2018) . https://doi.org/10.1016/j.jcat.2018.02.029

  39. A. Kalam, A.G. Al-Sehemi, S. Alrumman, G. Du, M. Assiri, A.E. Hesham, Antibacterial studies of bio-functionalized carbon decorated silver nanoparticles (AgNPs). J. Indian Chem. Soc. 10, 98 (2021). https://doi.org/10.1016/j.jics.2021.100155

    Article  CAS  Google Scholar 

  40. A. Villalan, M. Mannacharaju, B. Ramasamy, K. Sekar, M.R. Regina, S. Ganesan, Functioned silver nanoparticle loaded activated carbon for the recovery of bioactive molecule from bacterial fermenter for its bactericidal activity. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.08.128

    Article  Google Scholar 

  41. C.S. Barrera, K. Cornish, Novel mineral and organic materials from agro-industrial residues as fillers for natural rubber. J Polym. Environ. 4, 23 (2015). https://doi.org/10.1007/s10924-015-0737-4

    Article  CAS  Google Scholar 

  42. S. Kamal, A. Chowdhury, T.C.K. Yang, Ultrasensitive SERS detection of Rhodamine 6G using a silver enriched MOF-derived CuFe2O4 microcubes substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 270, 120826 (2022). https://doi.org/10.1016/j.saa.2021.120826

    Article  CAS  Google Scholar 

  43. N. Tanaka, H. Nishikiori, S. Kubota, M. Endo, T. Fujii, Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon 47, 2752 (2009). https://doi.org/10.1016/j.carbon.2009.05.030

    Article  CAS  Google Scholar 

  44. M. Zhang, H. Sun, X. Chen, H. Zhou, L. Xiong, W. Chen, Z. Chen, Z. Bao, and Y. Wu: The influences of graphene oxide (GO) and plasmonic Ag nanoparticles modification on the SERS sensing performance of TiO2 nanosheet arrays. J. Alloys Compd., (2021) . https://doi.org/10.1016/j.jallcom.2020.158189

  45. X. Zhang, L. Chen, X. Fang, Y. Shang, H. Gu, W. Jia, G. Yang, Y. Gu, L. Qu, Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites. Mikrochim. Acta 189, 197 (2022). https://doi.org/10.1007/s00604-022-05261-1

    Article  CAS  Google Scholar 

  46. Z. Li, R. Hong, Q. Liu, Q. Wang, C. Tao, H. Lin, and D. Zhang: Laser patterning induced the tunability of nonlinear optical property in silver thin films. Chem. Phys. Lett. 751, (2020) . https://doi.org/10.1016/j.cplett.2020.137535

  47. S. Yin, D. Zhao, Q. Ji, Y. Xia, S. Xia, X. Wang, M. Wang, J. Ban, Y. Zhang, E. Metwalli, X. Wang, Y. Xiao, X. Zuo, S. Xie, K. Fang, S. Liang, L. Zheng, B. Qiu, Z. Yang, Y. Lin, L. Chen, C. Wang, Z. Liu, J. Zhu, P. Muller-Buschbaum, Y.J. Cheng, Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount. Huge Impact. ACS Nano 12, 861 (2018). https://doi.org/10.1021/acsnano.7b08560

    Article  CAS  Google Scholar 

  48. S. Kaja, A. Nag, Bimetallic Ag-Cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit. Langmuir 44, 37 (2021). https://doi.org/10.1021/acs.langmuir.1c02119

    Article  CAS  Google Scholar 

  49. G.N. Xiao, S.Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 447, 305 (2007). https://doi.org/10.1016/j.cplett.2007.09.045

    Article  CAS  Google Scholar 

  50. M. Tiwari, A. Singh, S. Dureja, S. Basu, S.K. Pattanayek, Au nanoparticles decorated ZnO/ZnFe2O4 composite SERS-active substrate for melamine detection. Talanta 236, 122819 (2022). https://doi.org/10.1016/j.talanta.2021.122819

    Article  CAS  Google Scholar 

  51. Z.H. Li, J.H. Bai, X. Zhang, J.M. Lv, C.S. Fan, Y.M. Zhao, Z.L. Wu, H.J. Xu, Facile synthesis of Au nanoparticle-coated Fe3O4 magnetic composite nanospheres and their application in SERS detection of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 241, 118532 (2020). https://doi.org/10.1016/j.saa.2020.118532

    Article  CAS  Google Scholar 

  52. J. Li, Q. Wang, J. Wang, M. Li, X. Zhang, L. Luan, P. Li, W. Xu, Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Anal. Bioanal. Chem. 413, 4207 (2021). https://doi.org/10.1007/s00216-021-03366-9

    Article  CAS  Google Scholar 

  53. J. He, G. Song, X. Wang, L. Zhou, J. Li: Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin. J. Alloys Compd. 893, (2022) . https://doi.org/10.1016/j.jallcom.2021.162226

  54. V.N. Kuryakov, Phase behavior of n-octadecane in the form of water dispersion by the optical method. Mendeleev Commun. 3, 417 (2022). https://doi.org/10.1016/j.mencom.2022.05.043

    Article  CAS  Google Scholar 

  55. S. Naoki, M. Mitsuharu, F. Tomonori, Fukui Kunihiro, and Y. Hideto: Fine particle classification by a vertical type electrical water-sieve with various particle dispersion methods. Sep. Purif. Technol. 175, 107 (2017) . https://doi.org/10.1016/j.seppur.2016.11.009

  56. D. Zhang, P. Liang, J. Ye, J. Xia, Y. Zhou, J. Huang, D. Ni, L. Tang, S. Jin, Z. Yu, Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC-MS. Anal. Bioanal. Chem. 27, 7187 (2019). https://doi.org/10.1007/s00216-019-02103-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Foundation of Guizhou Province (QKHJ[2020]1Y259); the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2021D01C066); the United Foundation of Zunyi City and Zunyi Normal Collage (ZSKHHZ272); and the Education Department of Guizhou Provinceunder Grants (QJHKY[2019]115).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have approved for the final version of the manuscript.

Corresponding authors

Correspondence to Jun Tang or Tao Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1268 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wang, Q., Yang, J. et al. Biomass-derived porous carbon-protected silver nanoflowers construction of long-term stable SERS substrate for ultrasensitive detection of organic pollution. Journal of Materials Research 38, 519–531 (2023). https://doi.org/10.1557/s43578-022-00839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00839-0

Keywords

Navigation