Skip to main content
Log in

Contribution of Mössbauer spectrometry to structural characterizations of iron-based fluorinated materials: Application to pyrochlore (NH4)CuFeF6 and a new derived hydrate

  • Article
  • FOCUS ISSUE: Mössbauer Spectroscopy from Artificial Nano Architectures to Environmental Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper brings together the latest studies on iron-based fluorides, anhydrous, hydrates, or hybrids, particularly composed of HTB sheets, with the help of 57Fe Mössbauer spectrometry to accurately describe the chemical compositions and to highlight the anionic and/or cationic orders or disorders. As an illustration, a new ammonium hexafluoride with the formulation (NH4)Cu2+Fe3+F6 is synthesized by mechanical milling. Structural analysis by powder XRD made it possible to establish the disordered cubic pyrochlore structure. Because of its local probe behavior, the hyperfine structure observed by Mössbauer spectrometry not only specifies the oxidation state of Fe species but also confirms the cationic disorder and thus the magnetic frustration with a paramagnetic doublet at 77 K for Fe3+. The hydration of (NH4)CuFeF6 leads to a new structure corresponding to the hydrate (NH4)CuFeF6(H2O)4.H2O through self-crystallization under ambient air atmosphere. Such a process, giving millimeter size single crystals, is rarely encountered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Availability of data and material

The Supplementary Information is available free of charge: synthesis conditions of fluorinated materials, XRD patterns, and FT-IR spectra of (NH4)CuFeF6 under ambient air. Refinements, crystallographic data, isothermal hydration, and thermal analysis of (NH4)CuFeF6 and (NH4)CuFeF6(H2O)4·H2O. FT-IR and XRD patterns of (NH4)CuFeF6 before and after fluorination.

References

  1. A. Jourdan, B. Morel, Recent developments in fluorine chemistry for microelectronic applications: some examples at Comurhex. J. Fluor. Chem. 107(2), 255–264 (2001). https://doi.org/10.1016/S0022-1139(00)00367-5

    Article  CAS  Google Scholar 

  2. H. Groult, F. Lantelme, M. Salanne, C. Simon, C. Belhomme, B. Morel, F. Nicolas, Role of elemental fluorine in nuclear field. J. Fluor. Chem. 128(4), 285–295 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.012

    Article  CAS  Google Scholar 

  3. J. Lucas, J.L. Adam, Fluoride Glasses (Elsevier, Amsterdam, 2001). https://doi.org/10.1016/B0-08-043152-6/00570-2

    Book  Google Scholar 

  4. T. Krahl, E. Kemnitz, Aluminium fluoride-the strongest solid lewis acid: structure and reactivity. Catal. Sci. Technol. 7(4), 773–796 (2017). https://doi.org/10.1039/c6cy02369j

    Article  CAS  Google Scholar 

  5. D.E. Conte, N. Pinna, A review on the application of iron(III) fluorides as positive electrodes for secondary cells. Mater. Renew. Sustain. Energy 3(4), 37 (2014). https://doi.org/10.1007/s40243-014-0037-2

    Article  Google Scholar 

  6. T. Nakajima, H. Groult, Advanced Fluoride-Based Materials for Energy Conversion (Elsevier, Amsterdam, 2015). https://doi.org/10.1016/C2013-0-18650-3

    Book  Google Scholar 

  7. G.G. Amatucci, N. Pereira, Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128(4), 243–262 (2007). https://doi.org/10.1016/J.JFLUCHEM.2006.11.016

    Article  CAS  Google Scholar 

  8. M. Leblanc, V. Maisonneuve, A. Tressaud, Crystal chemistry and selected physical properties of inorganic fluorides and oxide-fluorides. Chem. Rev. 115(2), 1191–1254 (2015). https://doi.org/10.1021/cr500173c

    Article  CAS  Google Scholar 

  9. D. Deng, Transition metal oxyfluorides for next-generation rechargeable batteries. ChemNanoMat 3(3), 146–159 (2017). https://doi.org/10.1002/cnma.201600342

    Article  CAS  Google Scholar 

  10. C. Li, K. Chen, X. Zhou, J. Maier, Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. NPJ Comput. Mater. (2018). https://doi.org/10.1038/s41524-018-0079-6

    Article  Google Scholar 

  11. H. Groult, A. Tressaud, Use of inorganic fluorinated materials in lithium batteries and in energy conversion systems. Chem. Commun. 54(81), 11375–11382 (2018). https://doi.org/10.1039/c8cc05549a

    Article  CAS  Google Scholar 

  12. N. Zhang, X. Xiao, H. Pang, Transition metal (Fe Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horizons 4(1), 99–116 (2019). https://doi.org/10.1039/c8nh00144h

    Article  CAS  Google Scholar 

  13. L.F. Olbrich, A.W. Xiao, M. Pasta, Conversion-type fluoride cathodes: current state of the art. Curr. Opin. Electrochem. 30, 100779 (2021). https://doi.org/10.1016/j.coelec.2021.100779

    Article  CAS  Google Scholar 

  14. M.A. Reddy, M. Fichtner, Fluoride Cathodes for Secondary Batteries (Elsevier, Amsterdam, 2015). https://doi.org/10.1016/B978-0-12-800679-5.00003-8

    Book  Google Scholar 

  15. K. Lemoine, A. Hémon-Ribaud, M. Leblanc, J. Lhoste, J.M. Tarascon, V. Maisonneuve, Fluorinated materials as positive electrodes for Li-and Na-ion batteries. Chem. Rev. 122(18), 14405–39 (2022)

    Article  CAS  Google Scholar 

  16. D. Babel, A. Tressaud, Crystal chemistry of fluorides, in Inorganic Solid Fluorides. ed. by P. Hagenmuller (Academic Press, New York, 1985), pp.77–203. https://doi.org/10.1016/b978-0-12-313370-0.50008-6

    Chapter  Google Scholar 

  17. M. Leblanc, G. Ferey, P. Chevallier, Y. Calage, R. De Pape, Hexagonal tungsten bronze-type FeIII fluoride: (H2O)0.33FeF3; crystal structure, magnetic properties, dehydration to a new form of iron trifluoride. J. Solid State Chem. 47(1), 53–58 (1983). https://doi.org/10.1016/0022-4596(83)90041-5

    Article  CAS  Google Scholar 

  18. Y. Calage, M. Leblanc, G. Ferey, F. Varret, Mössbauer investigation of hexagonal tungsten bronze type FeIII fluorides: (H2O)0.33FeF3 and anhydrous FeF3. J. Magn. Magn. Mater. 43(2), 195–203 (1984). https://doi.org/10.1016/0304-8853(84)90098-2

    Article  CAS  Google Scholar 

  19. R. De Pape, G. Ferey, A new form of FeF3 with the pyrochlore structure: soft chemistry synthesis, crystal structure, thermal transitions and structural correlations with the other forms of FeF3. Mater. Res. Bull. 21(8), 971–978 (1986). https://doi.org/10.1016/0025-5408(86)90134-0

    Article  Google Scholar 

  20. G. Ferey, M. Leblanc, R. De Pape, Crystal structure of the ordered pyrochlore NH4FeIIFeIIIF6 structural correlations with Fe2F5·2H2O and its dehydration product Fe2F5·H2O. J. Solid State Chem. 40(1), 1–7 (1981). https://doi.org/10.1016/0022-4596(81)90352-2

    Article  CAS  Google Scholar 

  21. Y. Laligant, J. Pannetier, P. Labbe, G. Ferey, A new refinement of the crystal structure of the inverse weberite Fe2F5(H2O)2. J. Solid State Chem. 62(2), 274–277 (1986). https://doi.org/10.1016/0022-4596(86)90240-9

    Article  CAS  Google Scholar 

  22. J.M. Greneche, J. Linares, F. Varret, Y. Laligant, G. Ferey, Mössbauer spectroscopy of the magnetic behaviour of the frustrated series AFeF5(H2O)2: A = Mn, Fe Co, Ni. J. Magn. Magn. Mater. 73(1), 115–122 (1988). https://doi.org/10.1016/0304-8853(88)90177-1

    Article  CAS  Google Scholar 

  23. E. Herdtweck, Die Kristallstruktur Des Gemischtvalenten Eisenfluoridhydrates Fe3F8·2H2O. ZAAC J. Inorg. Gen. Chem. 501(6), 131–136 (1983). https://doi.org/10.1002/zaac.19835010615

    Article  CAS  Google Scholar 

  24. M. Leblanc, G. Ferey, Y. Calage, R. De Pape, Idle spin behavior of the shifted hexagonal tungsten bronze type compounds FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2. J. Solid State Chem. 53(3), 360–368 (1984). https://doi.org/10.1016/0022-4596(84)90113-0

    Article  CAS  Google Scholar 

  25. Z. Gohari-Bajestani, X. Wang, A. Guiet, R. Moury, J.M. Grenèche, A. Hémon-Ribaud, Y. Zhang, D. Chartrand, V. Maisonneuve, A. Seifitokaldani, N. Kornienko, J. Lhoste, Highly efficient water oxidation via a bimolecular reaction mechanism on rutile structured mixed-metal oxyfluorides. Chem Catal. 2(5), 1114–1127 (2022). https://doi.org/10.1016/j.checat.2022.03.002

    Article  CAS  Google Scholar 

  26. K. Lemoine, R. Moury, J. Lhoste, A. Ribaud, M. Leblanc, J.-M. Grenèche, J.-M. Tarascon, V. Maisonneuve, Stabilization of a mixed iron vanadium based hexagonal tungsten bronze hydroxyfluoride HTB-(Fe0.55V0.45)F2.67(OH)0.33 as a positive electrode for lithium-ion batteries. Dalt. Trans. 49(24), 8186–8193 (2020). https://doi.org/10.1039/d0dt01310b

    Article  CAS  Google Scholar 

  27. K. Lemoine, L. Zhang, J.M. Grenèche, A. Hémon-Ribaud, M. Leblanc, A. Guiet, C. Galven, J.M. Tarascon, V. Maisonneuve, J. Lhoste, New amorphous iron-based oxyfluorides as cathode materials for high-capacity lithium-ion batteries. J. Phys. Chem. C 123(35), 21386–21394 (2019). https://doi.org/10.1021/acs.jpcc.9b06055

    Article  CAS  Google Scholar 

  28. K. Lemoine, L. Zhang, D. Dambournet, J.M. Grenèche, A. Hémon-Ribaud, M. Leblanc, O.J. Borkiewicz, J.M. Tarascon, V. Maisonneuve, J. Lhoste, Synthesis by thermal decomposition of two iron hydroxyfluorides: structural effects of Li insertion. Chem. Mater. 31(11), 4246–4257 (2019). https://doi.org/10.1021/acs.chemmater.9b01252

    Article  CAS  Google Scholar 

  29. K. Lemoine, Z. Gohari-Bajestani, R. Moury, A. Terry, A. Guiet, J.-M. Grenèche, A. Hémon-Ribaud, N. Heidary, V. Maisonneuve, N. Kornienko, J. Lhoste, Amorphous iron-manganese oxyfluorides, promising catalysts for oxygen evolution reaction under acidic media. ACS Appl. Energy Mater. 4, 1173–1181 (2021). https://doi.org/10.1021/acsaem.0c02417

    Article  CAS  Google Scholar 

  30. K. Lemoine, R. Moury, E. Durand, E. Arroyo-de Dompablo, E. Morán, M. Leblanc, A. Hémon-Ribaud, J.-M. Grenèche, C. Galven, V. Gunes, J. Lhoste, V. Maisonneuve, First mixed-metal fluoride pyrochlores obtained by topotactic oxidation of ammonium fluorides under F2 gas. Cryst. Growth Des. 21, 935–945 (2021). https://doi.org/10.1021/acs.cgd.0c01279

    Article  CAS  Google Scholar 

  31. M. Albino, L. Clark, J. Lhoste, C. Payen, J.-M. Grenèche, P. Lightfoot, V. Maisonneuve, M. Leblanc, A magnetisation and Mössbauer study of triazole (M1–x2+Mx3+)M3+F5(Htaz)1–x(Taz)x weberites (M = Fe Co, Mn, Zn, Ga, V). Dalt. Trans. 46(16), 5352–5362 (2017). https://doi.org/10.1039/c7dt00587c

    Article  CAS  Google Scholar 

  32. M. Smida, J. Lhoste, V. Pimenta, A. Hémon-Ribaud, L. Jouffret, M. Leblanc, M. Dammak, J.M. Grenèche, V. Maisonneuve, New series of hybrid fluoroferrates synthesized with triazoles: various dimensionalities and Mössbauer studies. Dalt. Trans. 42(44), 15748–15755 (2013). https://doi.org/10.1039/c3dt51812d

    Article  CAS  Google Scholar 

  33. L. Clark, M. Albino, V. Pimenta, J. Lhoste, I. Da Silva, C. Payen, J.M. Grenèche, V. Maisonneuve, P. Lightfoot, M. Leblanc, Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic-organic hybrid fluoride. Philos. Trans. R. Soc. A (2019). https://doi.org/10.1098/rsta.2018.0224

    Article  Google Scholar 

  34. C.J. Nuttall, P. Day, Magnetization of the layer compounds AFeIIFeIII(C2O4)3 (A = organic cation), in low and high magnetic fields: manifestation of neel N and Q type ferrimagnetism in a molecular lattice. Chem. Mater. 3(5), 479–486 (1998). https://doi.org/10.1142/9789812706836_0034

    Article  Google Scholar 

  35. A. Bhattacharjee, P. Day, Contradicting reports on magnetic properties of layered molecule-based material N(n-C3H7)4[FeIIFeIII(C2O4)3]. Chem. Mater. 15(11), 2287–2288 (2003). https://doi.org/10.1021/cm021280f

    Article  CAS  Google Scholar 

  36. D. Babel, G. Pausewang, W. Viebahn, Die Struktur Einiger Fluoride, Oxide Und Oxid—fluoride AMe2X6: Der RbNiCrF6-Typ. Z. Nat. 22, 1219–1220 (1967)

    CAS  Google Scholar 

  37. D. Babel, Die Struktur Des RbNiCrF6-Typs Und Ihre Beziehung Zur Pyrochlorstruktur. Z. Anorg. Allg. Chem. 387(2), 161–178 (1972). https://doi.org/10.1002/zaac.19723870205

    Article  CAS  Google Scholar 

  38. A. Le Bail, H. Duroy, J.L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 23(3), 447–452 (1988). https://doi.org/10.1016/0025-5408(88)90019-0

    Article  Google Scholar 

  39. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1–2), 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  40. F. Varret, J. Teillet, J. Unpublished MOSFIT Program. Université du Mans, France.

Download references

Acknowledgments

The authors gratefully acknowledge the “X-ray Diffusion and Diffraction” and the “Electron Microscopy” technical platforms of IMMM (Le Mans University). The authors thank Cyrille Galven for the hydration and fluorination experiments.

Funding

One of the authors (K.L.) thanks the French Research Ministry for a doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kévin Lemoine or Jérôme Lhoste.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jean-Marc Grenèche was a guest editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 966 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemoine, K., Terry, A., Hémon-Ribaud, A. et al. Contribution of Mössbauer spectrometry to structural characterizations of iron-based fluorinated materials: Application to pyrochlore (NH4)CuFeF6 and a new derived hydrate. Journal of Materials Research 38, 1138–1148 (2023). https://doi.org/10.1557/s43578-022-00836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00836-3

Keywords

Navigation