Skip to main content
Log in

Micromechanics-based strain energy study of \(\{\textbf{1}\,\textbf{0}\,\bar{\textbf{1}}\,\textbf{2}\}\) twin-band pattern in a three-point bend Mg alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

\(\{\textbf{1}\,\textbf{0}\,\bar{\textbf{1}}\,\textbf{2}\}\) twinning in magnesium AZ31 alloy activates profusely under c-axis tension (tension twinning) or d-axis compression (extension twinning). In a three-point bending condition, a strongly basal textured Mg AZ31 alloy offers a d-axis compression along \(\langle \textbf{1}\,\textbf{0}\,\bar{\textbf{1}}\,\textbf{0} \rangle\) direction ensuing in a pattern of localized twinning events. A micromechanics-based analytical solution is used to calculate strain energy and energies involved for various patterns of localized twins. The results reveal a minimum energy path of twinning evolution, predicting first twin propagation to the neutral axis, nucleation of a second twin at a certain distance from the first one, with the microstructure finally evolving to a favorable twinning pattern to accommodate the total bending strain. The results show the effect of multivariant twinning on the overall accommodation of bending strain. The twinning behaviors observed from this analysis compare well with the experimental results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availablity

Data will be made available on reasonable request.

References

  1. T. Al-Samman, G. Gottstein, Room temperature formability of a magnesium AZ31 alloy: examining the role of texture on the deformation mechanisms. Mater. Sci. Eng. A 488(1–2), 406–414 (2008)

    Article  Google Scholar 

  2. G. Proust, C.N. Tomé, A. Jain, S.R. Agnew, Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy az31. Int. J. Plast. 25(5), 861–880 (2009)

    Article  CAS  Google Scholar 

  3. M. Barnett, Twinning and the ductility of magnesium alloys: Part II. “Contraction’’ twins. Mater. Sci. Eng. A 464(1–2), 8–16 (2007)

    Article  Google Scholar 

  4. H. El Kadiri, J. Baird, J. Kapil, A. Oppedal, M. Cherkaoui, S.C. Vogel, Flow asymmetry and nucleation stresses of \(\{{ 1}\,{ 0}\,\bar{{ 1}}\,{ 2}\}\) twinning and non-basal slip in magnesium. Int. J. Plast. 44, 111–120 (2013)

    Article  Google Scholar 

  5. F. Wang, S.R. Agnew, Dislocation transmutation by tension twinning in magnesium alloy az31. Int. J. Plast. 81, 63–86 (2016)

    Article  CAS  Google Scholar 

  6. F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in \(\{{ 1}\,{ 0}\,\bar{{ 1}}\,{ 2}\}\) twins in pure Mg. Acta Mater. 165, 471–485 (2019)

    Article  CAS  Google Scholar 

  7. Y. Zhang, P.C. Millett, M. Tonks, B. Biner, Deformation-twin-induced grain boundary failure. Scripta Mater. 66(2), 117–120 (2012)

    Article  CAS  Google Scholar 

  8. L. Capolungo, I. Beyerlein, G. Kaschner, C. Tomé, On the interaction between slip dislocations and twins in hcp zr. Mater. Sci. Eng. A 513, 42–51 (2009)

    Article  Google Scholar 

  9. I. Beyerlein, C. Tomé, A probabilistic twin nucleation model for hcp polycrystalline metals. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. 20090661 (2010). The Royal Society

  10. P.L. Pratt, S. Pugh, Twin accommodation in zinc. J. Inst. Met. 80, 653–658 (1952)

    CAS  Google Scholar 

  11. J.W. Christian, S. Mahajan, Deformation twinning. Prog. Mater. Sci. 39(1–2), 1–157 (1995)

    Article  Google Scholar 

  12. Paudel, Y., Barrett, C.D., El Kadiri, H.: Full-field crystal plasticity modeling of \(\{{\bf 1}\,{\bf 0}\,\bar{{\bf 1}}\,{\bf 2}\}\) twin nucleation. In: Magnesium Technology 2020, p. 141. Springer, (2020)

  13. Y. Paudel, D. Giri, M.W. Priddy, C.D. Barrett, K. Inal, M.A. Tschopp, H. Rhee, H. El Kadiri, A review on capturing twin nucleation in crystal plasticity for hexagonal metals. Metals 11(9), 1373 (2021)

    Article  CAS  Google Scholar 

  14. É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Variant selection during secondary twinning in Mg-3% Al. Acta Mater. 58(11), 3970–3983 (2010)

    Article  CAS  Google Scholar 

  15. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, Ė Martin, The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 59(5), 2046–2056 (2011)

    Article  CAS  Google Scholar 

  16. S. Mu, J.J. Jonas, G. Gottstein, Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 60(5), 2043–2053 (2012)

    Article  CAS  Google Scholar 

  17. W.D. Russell, N.R. Bratton, Y. Paudel, R.D. Moser, Z.B. McClelland, C.D. Barrett, A.L. Oppedal, W.R. Whittington, H. Rhee, S. Mujahid et al., In situ characterization of the effect of twin-microstructure interactions on 10–12 tension and 10–11 contraction twin nucleation, growth and damage in magnesium. Metals 10(11), 1403 (2020)

    Article  CAS  Google Scholar 

  18. M.A. Kumar, A. Kanjarla, S. Niezgoda, R. Lebensohn, C. Tomé, Numerical study of the stress state of a deformation twin in magnesium. Acta Mater. 84, 349–358 (2015)

    Article  Google Scholar 

  19. M. Arul Kumar, I.J. Beyerlein, R.J. McCabe, C.N. Tome, Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun. 7(1), 1–9 (2016)

    Article  Google Scholar 

  20. M.A. Kumar, I.J. Beyerlein, C.N. Tomé, Effect of local stress fields on twin characteristics in hcp metals. Acta Mater. 116, 143–154 (2016)

    Article  Google Scholar 

  21. T. Jin, H.M. Mourad, C.A. Bronkhorst, I.J. Beyerlein, A single crystal plasticity finite element formulation with embedded deformation twins. J. Mech. Phys. Solids 133, 103723 (2019)

    Article  CAS  Google Scholar 

  22. M. Ardeljan, M. Knezevic, Explicit modeling of double twinning in az31 using crystal plasticity finite elements for predicting the mechanical fields for twin variant selection and fracture analyses. Acta Mater. 157, 339–354 (2018)

    Article  CAS  Google Scholar 

  23. I. Beyerlein, L. Capolungo, P. Marshall, R. McCabe, C. Tomé, Statistical analyses of deformation twinning in magnesium. Philos. Magn. 90(16), 2161–2190 (2010)

    Article  CAS  Google Scholar 

  24. J. Cheng, S. Ghosh, Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium. J. Mech. Phys. Solids 99, 512–538 (2017)

    Article  CAS  Google Scholar 

  25. J. Cheng, S. Ghosh, A crystal plasticity Fe model for deformation with twin nucleation in magnesium alloys. Int. J. Plast 67, 148–170 (2015)

    Article  CAS  Google Scholar 

  26. Y. Paudel, C.D. Barrett, M.A. Tschopp, K. Inal, H. El Kadiri, Beyond initial twin nucleation in hcp metals: Micromechanical formulation for determining twin spacing during deformation. Acta Mater. 133, 134–146 (2017)

    Article  CAS  Google Scholar 

  27. J. Baird, B. Li, S.Y. Parast, S. Horstemeyer, L. Hector Jr., P. Wang, M. Horstemeyer, Localized twin bands in sheet bending of a magnesium alloy. Scripta Mater. 67(5), 471–474 (2012)

    Article  CAS  Google Scholar 

  28. Y. Paudel, J. Indeck, K. Hazeli, M.W. Priddy, K. Inal, H. Rhee, C.D. Barrett, W.R. Whittington, K.R. Limmer, H. El Kadiri, Characterization and modeling of \(\{{ 1}\,{ 0}\,\bar{{ 1}}\,{ 2}\}\) twin banding in magnesium. Acta Mater. 183, 438–451 (2020)

    Article  CAS  Google Scholar 

  29. H. El Kadiri, J. Kapil, A. Oppedal, L. Hector Jr., S.R. Agnew, M. Cherkaoui, S. Vogel, The effect of twin–twin interactions on the nucleation and propagation of \(\{1\,0\,\bar{1}\, 2\}\) twinning in magnesium. Acta Mater. 61(10), 3549–3563 (2013)

    Article  Google Scholar 

  30. J. Wang, R. Hoagland, J. Hirth, L. Capolungo, I. Beyerlein, C. Tomé, Nucleation of a \(\{\bar{1}\,{0}\,{{1}}\,{2}\}\) twin in hexagonal close-packed crystals. Scripta Mater. 61(9), 903–906 (2009)

    Article  CAS  Google Scholar 

  31. J. Wang, J. Hirth, C. Tomé, \(\{\bar{1}\,{0}\,{{1}}\,{2}\}\) twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57(18), 5521–5530 (2009)

    Article  CAS  Google Scholar 

  32. J. Wang, I. Beyerlein, C. Tomé, An atomic and probabilistic perspective on twin nucleation in Mg. Scripta Mater. 63(7), 741–746 (2010)

    Article  CAS  Google Scholar 

  33. R. Xin, C. Guo, Z. Xu, G. Liu, X. Huang, Q. Liu, Characteristics of long \(\{\)10-12\(\}\) twin bands in sheet rolling of a magnesium alloy. Scripta Mater. 74, 96–99 (2014)

    Article  CAS  Google Scholar 

  34. X. Wang, L. Jiang, C. Cooper, K. Yu, D. Zhang, T.J. Rupert, S. Mahajan, I.J. Beyerlein, E.J. Lavernia, J.M. Schoenung, Toughening magnesium with gradient twin meshes. Acta Mater. 195, 468–81 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Center for Advanced Vehicular Systems (CAVS), Mississippi State University for their support and resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YubRaj Paudel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 115 kb)

Appendix

Appendix

The analytical solution to the elliptical integral expressions \(I_i\), and \(I_{ij}\) used to obtain the elastic fields:

$$\begin{aligned}{} & {} \begin{aligned} I_1 =&I_2 = -\frac{\left( \pi a_1^2 a_3\right) \left( 2 \sqrt{a_1^2-a_3^2} \lambda -\pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{a_1^2-a_3^2} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }+2 a_1^2 \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) +2 \lambda \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) +2 \sqrt{a_1^2-a_3^2} a_3^2\right) }{\left( a_1^2-a_3^2\right) {}^{3/2} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }} \end{aligned} \end{aligned}$$
(9)
$$\begin{aligned}{} & {} I_3 = \frac{2 \pi a_1^2 a_3 \left( \sqrt{a_1^2-a_3^2} \left( 2 \lambda -\pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }\right) +2 a_1^2 \left( \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) +\sqrt{a_1^2-a_3^2}\right) +2 \lambda \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) }{\left( a_1^2-a_3^2\right) {}^{3/2} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }} \end{aligned}$$
(10)
$$\begin{aligned}{} & {} \begin{aligned} I_{11}&= I_{22} = I_{12} = I_{21} = \frac{\pi a_1^2 a_3}{4 \left( a_1^2-a_3^2\right) {}^{5/2} \left( a_1^2+\lambda \right) {}^3 \sqrt{a_3^2+\lambda }}\\&\left( a_1^2 \left( \sqrt{a_1^2-a_3^2} \sqrt{a_3^2+\lambda } \left( 9 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \lambda ^2-10 \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }\right) -12 \lambda \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \right. \\&+3 \lambda \left( \sqrt{a_1^2-a_3^2} \sqrt{a_3^2+\lambda } \left( \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \lambda ^2-2 \sqrt{\left( a_1^2+\lambda \right) ^2 \left( a_3^2+\lambda \right) }\right) -2 \lambda \sqrt{\left( a_1^2+\lambda \right) ^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \\&+3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{a_1^2-a_3^2} a_1^6 \sqrt{a_3^2+\lambda }+4 \sqrt{a_1^2-a_3^2} a_3^2 \sqrt{a_3^2+\lambda } \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }\\&\left. +3 a_1^4 \left( 3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{a_1^2-a_3^2} \lambda \sqrt{a_3^2+\lambda }-2 \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \right) \end{aligned} \end{aligned}$$
(11)
$$\begin{aligned}{} & {} \begin{aligned} I_{13}&= I_{23} = I_{31} = I_{32} = \frac{\pi a_1^2 a_3}{\left( a_1^2-a_3^2\right) {}^{5/2} \left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) {}^{3/2}} \\&\left( a_3^2 \left( \sqrt{a_1^2-a_3^2} \sqrt{a_3^2+\lambda } \left( 2 \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }-3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \lambda ^2\right) +6 \lambda \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \right. \\&-3 \lambda \left( \sqrt{a_1^2-a_3^2} \sqrt{a_3^2+\lambda } \left( \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \lambda ^2-2 \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }\right) -2 \lambda \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \\&-2 a_1^2 (\sqrt{a_1^2-a_3^2} \sqrt{a_3^2+\lambda } \left( 3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \lambda ^2-2 \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }\right) \\&+3 a_3^2 \left( \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{a_1^2-a_3^2} \lambda \sqrt{a_3^2+\lambda }-\sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \\&\left. -3 \lambda \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) )-3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{a_1^2-a_3^2} a_1^4 \left( a_3^2+\lambda \right) {}^{3/2}\right) \end{aligned} \end{aligned}$$
(12)
$$\begin{aligned}{} & {} \begin{aligned} I_{33} =&\frac{2 \pi a_1^2 a_3}{3 \left( a_1^2-a_3^2\right) {}^{5/2} \left( \left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) \right) {}^{3/2}} \\&\left( a_1^2+\lambda \right) {}^2\left( -2 a_1^2 \left( a_3^2 \left( 3 \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) +4 \sqrt{a_1^2-a_3^2}\right) +\lambda \left( 3 \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) +2 \sqrt{a_1^2-a_3^2}\right) \right) \right. \\&+a_3^2 \left( \sqrt{a_1^2-a_3^2} \left( 3 \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }-8 \lambda \right) -6 \lambda \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) \\&\left. +3 \lambda \left( \sqrt{a_1^2-a_3^2} \left( \pi \sqrt{\frac{1}{a_1^2-a_3^2}} \sqrt{\left( a_1^2+\lambda \right) {}^2 \left( a_3^2+\lambda \right) }-2 \lambda \right) -2 \lambda \sqrt{a_3^2+\lambda } \tan ^{-1}\left( \frac{\sqrt{a_3^2+\lambda }}{\sqrt{a_1^2-a_3^2}}\right) \right) +2 \sqrt{a_1^2-a_3^2} a_1^4\right) \end{aligned} \end{aligned}$$
(13)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, Y., Barrett, C., Mujahid, S. et al. Micromechanics-based strain energy study of \(\{\textbf{1}\,\textbf{0}\,\bar{\textbf{1}}\,\textbf{2}\}\) twin-band pattern in a three-point bend Mg alloy. Journal of Materials Research 38, 461–472 (2023). https://doi.org/10.1557/s43578-022-00831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00831-8

Keywords

Navigation