Skip to main content

Advertisement

Log in

Physical and electrochemical characteristics of NiFe2O4 thin films as functions of precursor solution concentration

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of the precursor solution concentration on the physical and electrochemical characteristics of NiFe2O4 films were studied. XRD patterns confirmed the formation of a spinel cubic crystal structure. FE-SEM images showed a mesoporous morphology. EDAX analysis confirmed a nearly stoichiometric deposition. Optical absorption studies confirmed the direct bandgap energies in the range 2.00–2.27 eV. The films deposited with a 0.25 M solution concentration had the minimum room-temperature electrical resistivity (3.39 × 103 Ωcm). Films deposited with a 0.15 M solution had the maximum specific capacitance values, 591 F g−1 at a scan rate of 5 mV s−1 (CV) and 632 F g−1 at a current density of 0.5 A g−1 (GCD). NiFe2O4 films exhibited specific energy and specific power values of 15.22 W h kg−1 and 225 W kg−1, respectively, at a current density of 1 A g−1. Further, these films retained 92.97% of their specific capacitance after 1000 continuous cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

It is hereby assured that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. R. Singhal, M. Chaudhary, S. Tyagi, D. Tyagi, V. Bhardwaj, B.P. Singh, Recent developments in transition metal-based nanomaterials for supercapacitor applications. J. Mater. Res. 37, 2124–2149 (2022)

    CAS  Google Scholar 

  2. W. Wang, W.-Y. Xie, F.-X. Zhou, L. Chen, M. Zhou, G.-X. Wang, Xu. Wenyuan, E. Liang, Three-dimensional nitrogen-doped graphene hydrogel-based flexible all-solid-state supercapacitors. J. Mater. Res. 36, 376–386 (2021)

    CAS  Google Scholar 

  3. T. Antony Sandosh, A. Simi, Morphology controlled synthesis of one-dimensional CoMn2O4 nanorods for high-performance supercapacitor electrode application. Chem. Pap. 75, 2295–2304 (2021)

    Google Scholar 

  4. R. Abirami, R. Kabilan, P. Nagaraju, V. Hariharan, S. Thennarasu, Enhanced electrochemical performance of Mn3O4/multiwalled carbon nanotube nanocomposite for supercapacitor applications. J. Electron. Mater. 50, 6467–6474 (2021)

    CAS  Google Scholar 

  5. A. Dutta, K. Chatterjee, S. Mishra, S.K. Saha, A.J. Akhtar, An insight into the electrochemical performance of cobalt-doped ZnO quantum dot for supercapacitor applications. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00654-7

    Article  Google Scholar 

  6. Y. Zhang, C.-R. Chang, H.-l Gao, S.-W. Wang, Ji. Yan, K.-Z. Gao, X.-D. Jia, H.-W. Luo, H. Fang, A.-Q. Zhang, L.-Z. Wang, High-performance supercapacitor electrodes based on NiMoO4 nanorods. J. Mater. Res. 34, 2435–2444 (2019)

    CAS  Google Scholar 

  7. X. Zhang, L. Yue, S. Zhang, Y. Feng, L. An, M. Wang, J. Mi, Nickel-doped cobalt molybdate nanorods with excellent cycle stability for aqueous asymmetric supercapacitor. Int. J. Hydrog. Energy 45(15), 8853–8865 (2020)

    CAS  Google Scholar 

  8. C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1, 4644–4658 (2019)

    CAS  Google Scholar 

  9. V.A. Jundale, D.A. Patil, A.A. Yadav, Preparation and characterization of NiFe2O4 thin films for supercapacitor applications. Ph. Transit. 95(11), 786–802 (2022)

    CAS  Google Scholar 

  10. M.S. Javed, C. Zhang, L. Chen, Yi. Xi, Hu. Chenguo, Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. J. Mater. Chem. A 4, 8851–8859 (2016)

    CAS  Google Scholar 

  11. S.B. Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021)

    CAS  Google Scholar 

  12. M. Taei, E. Havakeshian, H. Salavati, M. Azemati, Highly active electrocatalysts for ethanol oxidation based on gold nanodendrites modified with NiFe2O4 nanoparticles decorated multi-walled carbon nanotubes. Chem. Pap. 73, 2687–2695 (2019)

    CAS  Google Scholar 

  13. T. Dippong, F. Goga, E.-A. Levei, O. Cadar, Influence of zinc substitution with cobalt on thermal behaviour, structure and morphology of zinc ferrite embedded in silica matrix. J. Solid State Chem. 275, 159–166 (2019)

    CAS  Google Scholar 

  14. C.-H. Yang, Y.-C. Chen, Wu. Chang-Feng, R.-J. Chung, S. Yougbaré, L.-Y. Lin, Novel synthesis of ZIF67-derived MnCo2O4 nanotubes using electrospinning and hydrothermal techniques for supercapacitor. J. Solid State Chem. 313, 123351 (2022)

    CAS  Google Scholar 

  15. Wu. Chenyan, F. Huang, Q. Shen, Yu. LiXin, C. Zhang, J. Sheng, Di. Cheng, H. Yang, Construction of magnetically separable hierarchical Z-scheme NiFe2O4@Bi2Sn2O7 heterojunction with enhanced visible-light photocatalytic activity. J. Mater. Res. 36, 3366–3379 (2021)

    Google Scholar 

  16. Q. Yu, S. Pan, W. Huang, R. Liu, Effects of solution concentration on magnetic NiFe2O4 nanomaterials prepared via the rapid combustion process. J. Nanosci. Nanotechnol. 19(4), 2449–2452 (2019)

    CAS  Google Scholar 

  17. B. Senthilkumar, R.K. Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. J. Mater. Chem. Phys. 130, 285–292 (2011)

    CAS  Google Scholar 

  18. M. Sethi, U.S. Shenoy, S. Muthu, D.K. Bhat, Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. J. Mater. Sci. 14(2), 120–132 (2020)

    Google Scholar 

  19. S.B. Bandgar, M.M. Vadiyar, Y.-C. Ling, J.-Y. Chang, S.-H. Han, A.V. Ghule, S.S. Kolekar, Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Appl. Energy Mater. 1(2), 638–648 (2018)

    CAS  Google Scholar 

  20. M. Hua, L. Xu, F. Cui, L. Jiabiao, Y. Huang, J. Bao, J. Qiu, Y. Xu, X. Hui, Z. Yan, H. Li, Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance. J. Mater. Sci. 53(10), 7621–7636 (2018)

    CAS  Google Scholar 

  21. P. Bhojane, A. Sharma, M. Pusty, Y. Kumar, S. Sen, P. Shirage, Synthesis of ammonia assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors. J. Nanosci. Nanotechnol. 17(2), 1387–1392 (2017)

    CAS  Google Scholar 

  22. V.V. Jadhav, R.M. Kore, N.D. Thorat, J.M. Yun, K.H. Kim, R.S. Mane, C. O’Dwyer, Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Mater. Res. Express 5, 125004 (2018)

    Google Scholar 

  23. V.R. Shinde, T.P. Gujar, C.D. Lokhande, LPG sensing properties of ZnO films prepared by spray pyrolysis method: Effect of molarity of precursor solution. Sens. Actuators B 120(2), 551–559 (2007)

    CAS  Google Scholar 

  24. A.A. Yadav, Preparation and electrochemical properties of spray deposited α-Fe2O3 from nonaqueous medium for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 27(12), 12876–12883 (2016)

    CAS  Google Scholar 

  25. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr. Appl. Phys. 13(6), 985–989 (2013)

    Google Scholar 

  26. A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap 72(6), 1407–1415 (2018)

    CAS  Google Scholar 

  27. A. Gahtar, S. Benramache, A. Ammari, A. Boukhachem, A. Ziouche, Effect of molar concentration on the physical properties of NiS thin film prepared by spray pyrolysis method for supercapacitors. Inorg. Nano-Met. Chem. 52, 1–10 (2021)

    Google Scholar 

  28. S. Palanichamy, J. Mohamed, K. ArunKumar, S. Pandiarajan, A. Lourdusamy, Effect of molar concentration on physical properties of spray deposited SnO2 thin films using nebulizer. J. Sol Gel Sci. Technol. 89(6), 392–402 (2019)

    CAS  Google Scholar 

  29. I. Malinowska, Z. Ryżyńska, E. Mrotek, T. Klimczuk, A. Zielińska-Jurek, Synthesis of CoFe2O4 nanoparticles: the effect of ionic strength, concentration, and precursor type on morphology and magnetic properties. J. Nanomater. (2020). https://doi.org/10.1155/2020/9046219

    Article  Google Scholar 

  30. A.A. Yadav, E.U. Masumdar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films. Phys. B 404, 1874 (2009)

    CAS  Google Scholar 

  31. V.A. Jundale, A.A. Yadav, Precursor solution concentration-dependent electrochemical properties of CoFe2O4 thin films. J. Mater. Sci.: Mater. Electron. 33(24), 19612–19626 (2022)

    CAS  Google Scholar 

  32. R.C. Ambare, B.J. Lokhande, Solution concentration and decomposition temperature dependent electrochemical behavior of aqueous route spray pyrolysed Mn3O4: supercapacitive approach. J. Mater. Sci.: Mater. Electron. 28(16), 12246–12252 (2017)

    CAS  Google Scholar 

  33. V.S. Jamadade, P.K. Pagare, D.S. Gaikwad, A.S. Burungale, V.S. Sawant, Supercapacitive performance of lithium doped and undoped NiFe2O4 thin films by chemical deposition method. J. Electron. Mater. 48, 7539–7542 (2019)

    CAS  Google Scholar 

  34. S.R. Gibin, P. Sivagurunathan, Synthesis and characterization of nickel cobalt ferrite(Ni1-xCoxFe2O4) nano particles by co-precipitation method with citrate as chelating agent. J. Mater. Sci.: Mater. Electron. 28, 1985–1996 (2017)

    CAS  Google Scholar 

  35. JCPDS data card (86–2267).

  36. N. Kumar, A. Kumar, S. Chandrasekaran, T.Y. Tseng, Synthesis of mesoporous NiFe2O4 nanoparticles for enhanced supercapacitive performance. J. Clean Energy Technol. 6(1), 51–55 (2018)

    CAS  Google Scholar 

  37. H. Moradmard, S.F. Shayesteh, The variation of magnetic properties of nickel ferrite by annealing. J. Manuf. Sci. Technol. 3, 141–145 (2015)

    Google Scholar 

  38. A.R. Chavan, S.D. Birajdar, R.R. Chilwar, K.M. Jadhav, Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. J. Alloys Compd. 735, 2287–2297 (2018)

    CAS  Google Scholar 

  39. R.S. Ingole, B.J. Lokhande, Effect of pyrolysis temperature on structural, morphological and electrochemical properties of vanadium oxide thin films. J. Anal. Appl. Pyrolysis 120, 434–440 (2016)

    CAS  Google Scholar 

  40. A.A. Yadav, T.B. Deshmukh, R.V. Deshmukh, D.D. Patil, U.J. Chavan, Electrochemical supercapacitive performance of hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium. Thin Solid Films 616, 351–358 (2016)

    CAS  Google Scholar 

  41. S.-K. Tong, P.-W. Chi, S.-H. Kung, D.-H. Wei, Tuning bandgap and surface wettability of NiFe2O4 driven by phase transition. Sci. Rep. 8, 1338 (2018)

    Google Scholar 

  42. M. Ardyanian, M. Moeini, H. Azimi Juybari, Thermoelectric and photoconductivity properties of zinc oxide–tin oxide binary systems prepared by spray pyrolysis. Thin Solid Films 552, 39–45 (2014)

    CAS  Google Scholar 

  43. M. Oztas, Influence of grain size on electrical and optical properties of InP films. Chin. Phys. Lett. 25, 4090–4092 (2008)

    CAS  Google Scholar 

  44. A.A. Yadav, Spray deposition of tin oxide thin films for supercapacitor applications: effect of solution molarity. J. Mater. Sci.: Mater. Electron. 27(7), 6985–6991 (2016)

    CAS  Google Scholar 

  45. A.A. Yadav, Nanocrystalline copper selenide thin films by chemical spray pyrolysis. J. Mater. Sci.: Mater. Electron. 25(3), 1251–1257 (2014)

    CAS  Google Scholar 

  46. J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl. Surf. Sci. 254, 5844–5848 (2008)

    CAS  Google Scholar 

  47. C. Shen, X. Guan, Y. Tang, X. Zhao, Y. Zuo, A zinc-cobalt-nickel heterostructure synthesized by ultrasonic pulse electrodeposition as a cathode for high performance supercapacitors. J. Electroanal. Chem. 902, 115793 (2021)

    CAS  Google Scholar 

  48. J. Yan, U. Khoo, A. Sumboja, P.S. Lee, Facile coating of manganese oxide nanowires with high-performance capacitive behavior. ACS Nano 4, 4247–4255 (2010)

    CAS  Google Scholar 

  49. A.A. Yadav, U.J. Chavan, Electrochemical supercapacitive performance of spray deposited NiSnO3 thin films. Thin Solid Films 634, 33–39 (2017)

    CAS  Google Scholar 

  50. V.S. Jamadade, V.J. Fulari, C.D. Lokhande, Supercapacitive behaviour of electrosynthesized marygold-like structured nickel doped iron hydroxide thin film. J. Alloys Compd. 509, 6257–6261 (2011)

    CAS  Google Scholar 

  51. A.A. Yadav, U.J. Chavan, Electrochemical supercapacitive performance of spray deposited NiO electrodes. J. Electron. Mater. 47, 3770–3778 (2018)

    CAS  Google Scholar 

  52. Z. Ye, R. Miao, F. Miao, B. Tao, Y. Zang, P.K. Chu, 3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensors. J. Electroanal. Chem. 903, 115766 (2021)

    CAS  Google Scholar 

  53. A. Ghasemi, M. Kheirmand, H. Heli, Synthesis of novel NiFe2O4 nanospheres for high performance pseudocapacitor applications. Russ. J. Electrochem. 55(3), 206–214 (2019)

    CAS  Google Scholar 

  54. M.K. Zate, S.F. Shaikh, V.V. Jadhav, S.D. Waghmare, D.Y. Ahn, R.S. Mane, S.-H. Han, O.-S. Joo, Electrochemical supercapacitive properties of sprayed nickel ferrite nanostructured thin film electrode. J. Nanoeng. Nanomanuf. 4(2), 93–97 (2014)

    CAS  Google Scholar 

  55. Q. Liu, J. Liu, D. Xu, C. Liu, Z. Lu, D. Xuan, Z. Wang, Y. Ye, D. Wang, S. Li, D. Wang, NiCo2O4 with unique 3D miniature sea urchins as binder-free electrode for high performance asymmetric supercapacitor. J. Electroanal. Chem. 908, 116068 (2022)

    CAS  Google Scholar 

  56. S.S. Scindia, R.B. Kamble, J.A. Kher, Nickel ferrite/polypyrrole core-shell composite as an efficient electrode material for high-performance supercapacitor. AIP Adv. 9, 055218 (2019)

    Google Scholar 

  57. B.Y. Fugare, B.J. Lokhande, The influence of concentration on the morphology of TiO2 thin prepared by spray pyrolysis for electrochemical study. Appl. Phys. A 123, 394–403 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by VAJ and DAP and AAY commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhijit A. Yadav.

Ethics declarations

Conflict of interest

There are no financial or non-financial interests.

Research involving human and/or animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1745 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jundale, V.A., Patil, D.A. & Yadav, A.A. Physical and electrochemical characteristics of NiFe2O4 thin films as functions of precursor solution concentration. Journal of Materials Research 38, 439–449 (2023). https://doi.org/10.1557/s43578-022-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00829-2

Keywords

Navigation