Skip to main content
Log in

Deformation microstructures and texture evolution of the Mg–Zn–Mn alloy with high strain rate rolling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of strain rates (έ) on the microstructure, texture, and mechanical properties of the Mg–5Zn–0.6Mn alloys during high strain rate rolling at 300 °C are studied. Increasing έ promotes dynamic recrystallization (DRX). The DRX grain grows from 1.0 to 3.4 μm, and the DRX volume fraction increases from 76 to 93% with έ rising from 10 to 25 s–1. The maximum intensity values of basal texture decrease from 2.74 to 2.09 with increasing έ. The texture weakening is mainly attributed to the increase in DRX volume fraction and the number of tensile twins. The alloy sheets rolled at 10 s–1 possess optimal comprehensive mechanical properties (the tensile strength of 321 MPa, yield strength of 240 MPa, and elongation of 24.9%), attributing to the smallest DRX grain size, and the largest geometrically necessary dislocations density and precipitation density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. L.L. Guo, F. Fujita, Effect of deformation mode, dynamic recrystallization and twinning on rolling texture evolution of AZ31 magnesium alloys. T. Nonferr. Metal. Soc. 28(6), 1094–1102 (2018)

    CAS  Google Scholar 

  2. M. Masoumi, M. Pekguleryuz, The influence of Sr on the microstructure and texture evolution of rolled Mg–1%Zn alloy. Mat. Sci. Eng. A 529, 207–214 (2011)

    CAS  Google Scholar 

  3. T. Lasera, M.R. Nürnberg, A. Janz, Ch. Hartig, D. Letzig, R. Schmid-Fetzer, R. Bormann, The influence of manganese on the microstructure and mechanical properties of AZ31 gravity die cast alloys. Acta Mater. 54(11), 3033–3041 (2006)

    Google Scholar 

  4. N. Stanford, M.R. Barnett, The origin of “rare earth” texture development in extruded Mg–based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 496(1–2), 399–408 (2008)

    Google Scholar 

  5. W.J. Kim, S.J. Yoo, Z.H. Chen, H.T. Jeong, Grain size and texture control of Mg–3Al–1Zn alloy sheet using a combination of equal–channel angular rolling and high–speed–ratio differential speed–rolling processes. Scr. Mater. 60(10), 897–900 (2009)

    CAS  Google Scholar 

  6. S.W. Pan, Y.C. Xin, G.J. Huang, Q. Li, F.L. Guo, Q. Liu, Tailoring the texture and mechanical anisotropy of a Mg–2Zn–2Gd plate by varying the rolling path. Mater. Sci. Eng. A 653, 93–98 (2016)

  7. H.M. Chen, H.S. Yu, S.B. Kang, G.H. Min, Y.X. Jin, Effect of rolling temperature on microstructure and texture of twin roll cast ZK60 magnesium alloy. Trans. Nonferr. Metal. Soc. 20(11), 2086–2091 (2010)

    CAS  Google Scholar 

  8. M. Sanjari, A.S.H. Kabir, A. Farzadfar, H. Utsunomiya, R. Petrov, L. Kestens, S. Yue, Promotion of texture weakening in magnesium by alloying and thermomechanical processing. II: rolling speed. J. Mater. Sci. 49(3), 1426–1436 (2013)

    Google Scholar 

  9. J.X. Liu, K. Liu, W.B. Du, S.B. Li, Z.H. Wang, X. Du, C.C. Sun, Effect of temperature on microstructure and texture evolution of Mg–Zn–Er alloy during hot compression. Trans. Nonferr. Metal. Soc. 28(11), 2214–2225 (2018)

    CAS  Google Scholar 

  10. M.Y. Zheng, L.B. Tong, S.W. Xu, X.S. Hu, K. Wu, S. Kamado, Microstructure and mechanical properties of extruded Mg–Zn–Ca alloy. Mater. Sci. Forum 654, 703–706 (2010)

    Google Scholar 

  11. H.N. Liu, Y.J. Li, Z. Kui, X.G. Li, K.K. Wang, Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy. J. Mater. Sci. 55(32), 12434–12447 (2020)

    CAS  Google Scholar 

  12. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du, X.Z. Liao, Fabrication of Mg–Al–Zn–Mn alloy sheets with homogeneous fine–grained structures using high strain–rate rolling in a wide temperature range. Mater. Sci. Eng. A 559, 765–772 (2013)

    CAS  Google Scholar 

  13. S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Mechanisms for enhanced plasticity in magnesium alloys. Acta Mater. 82, 344–355 (2015)

    CAS  Google Scholar 

  14. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Recrystallization mechanism of as–cast AZ91 magnesium alloy during hot compressive deformation. Mater. Sci. Eng. A 527, 52–60 (2009)

    Google Scholar 

  15. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 55(6), 2101–2112 (2007)

    CAS  Google Scholar 

  16. I. Basu, T. Al-Samman, Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 67, 116–133 (2014)

    CAS  Google Scholar 

  17. S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, S. Yue, Texture weakening and static recrystallization in rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys. J. Mater. Sci. 47(14), 5488–5500 (2012)

    CAS  Google Scholar 

  18. É. Martin, R.K. Mishra, J.J. Jonas, Effect of twinning on recrystallisation textures in deformed magnesium alloy AZ31. Philos. Mag. 91(27), 3613–3626 (2011)

    CAS  Google Scholar 

  19. H. Somekawa, Y. Osawa, A. Singh, K. Washio, T. Mukai, Effect of micro–alloying elements on deformation behavior in Mg–Y binary alloys. Mater Trans. 55(1), 182–187 (2014)

    CAS  Google Scholar 

  20. X.L. Ma, C.X. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y.T. Zhu, Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 116, 43–52 (2016)

    CAS  Google Scholar 

  21. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain–gradient plasticity: a few critical issues. Scr. Mater. 48(2), 119–125 (2003)

    CAS  Google Scholar 

  22. E. Nes, B. Holmedal, E. Evangelista, K. Marthinsen, Modelling grain boundary strengthening in ultra–fine grained aluminum alloys. Mater. Sci. Eng. A 410–411, 178–182 (2005)

    Google Scholar 

  23. X. Zhao, K. Zhang, X.G. Li, Y.J. Li, Q.B. He, J.F. Sun, Deformation behavior and dynamic recrystallization of Mg–Y–Nd–Gd–Zr alloy. J. Rare Earths 26(6), 846–850 (2008)

    Google Scholar 

  24. A. Chapuis, B. Wang, Q. Liu, A comparative study between uniaxial compression and plane strain compression of Mg–3Al–1Zn alloy using experiments and simulations. Mater. Sci. Eng. A 597, 349–358 (2014)

    CAS  Google Scholar 

  25. P. Yang, L. Meng, X. Li, W. Mao, L. Chen, Microstructure and micro-texture evolution of compression twins in magnesium (Wiley, New York, 2008), pp.159–163

    Google Scholar 

  26. S.G. Hong, S.H. Park, C.S. Lee, Role of 10–12 twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 58(18), 5873–5885 (2010)

    CAS  Google Scholar 

  27. Z.H. Chen, W.J. Xia, Y.Q. Chen, D.F. Fu, Texture and anisotropy in magnesium alloys. Chin. J. Nonferr. Metal. 15(1), 1–11 (2005)

    CAS  Google Scholar 

  28. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, J.F. Nie, Texture evolution during static recrystallization of cold–rolled magnesium alloys. Acta Mater. 105, 479–494 (2016)

    CAS  Google Scholar 

  29. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 157, 53–71 (2018)

    CAS  Google Scholar 

  30. L.Q. Shen, Q. Yang, L. Jin, J. Dong, Deformation behavior and microstructure transformation of AZ31B Mg alloy under high strain rate compression. Chin. J. Nonferr. Metal. 24(9), 2195–2204 (2014)

    CAS  Google Scholar 

  31. B.H. Lee, W. Bang, S. Ahn, C.S. Lee, Effects of temperature and strain rate on the high–temperature workability of strip–cast Mg–3Al–1Zn alloy. Metall. Mater. Trans A 39(6), 1426–1434 (2008)

    Google Scholar 

  32. H.T. Jiang, Z. Ma, Z.X. Cai, Y. Shu, Q. Kang, Texture and room–temperature formability of rolled Mg–1.5Zn–xCe alloys. Chin. J. Eng. 37(2), 204–210 (2015)

    CAS  Google Scholar 

  33. Q.F. Wang, W.B. Du, K. Liu, Z.H. Wang, S.B. Li, K. Wen, Microstructure, texture and mechanical properties of as–extruded Mg–Zn–Er alloys. Mater. Sci. Eng. A 581, 31–38 (2013)

    CAS  Google Scholar 

  34. H.L. Ding, T.Y. Wang, C.Z. Xu, D.K. Li, Effects of Ca addition and deformation conditions on microstructure and texture of Mg–Zn alloy. Chin. J. Nonferr. Metal. 25(5), 1142–1152 (2015)

    CAS  Google Scholar 

  35. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427(1–2), 316–323 (2007)

    CAS  Google Scholar 

  36. W. Sylwestrowicz, E.O. Hall, The deformation and ageing of mild steel. Proc. Phys. Soc. B 64(6), 495–502 (1951)

    Google Scholar 

  37. B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng. A 277(1–2), 297–304 (2000)

    Google Scholar 

  38. J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8), 1009–1015 (2003)

    CAS  Google Scholar 

  39. W.N. Tang, R.S. Chen, J. Zhou, E.H. Han, Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg–Zn–Y–Zr alloy. Mater. Sci. Eng. A 499(1–2), 404–410 (2009)

    Google Scholar 

  40. M. Mabuchi, Y. Chino, H. Iwasaki et al., The grain size and texture dependence of tensile properties in extruded Mg–9Al–1Zn. Mater. Trans. 42(7), 1182–1188 (2001)

    CAS  Google Scholar 

  41. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du, X.Z. Liao, Feasibility of high strain–rate rolling of a magnesium alloy across a wide temperature range. Scr. Mater. 67, 404–407 (2012)

    CAS  Google Scholar 

  42. H.G. Yan, Q. Wu, J.H. Chen, W.J. Xia, M. Song, B. Su, J. Wu, Microstructure evolution and mechanical properties of the ZM61 alloy sheets under different pre–rolling and high strain rate rolling temperatures. J. Mater. Res. 35(14), 1817–1824 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of the Scientific Research Fund of Education Department in Hunan Province, China (21C0431 and 21C0408); the National Natural Science Foundation of China Projects (No. 52271177) and the Science and Technology Innovation Leaders Projects in Hunan Province, China (No. 2021RC4036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caihe Fan or Hongge Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Fan, C., Yan, H. et al. Deformation microstructures and texture evolution of the Mg–Zn–Mn alloy with high strain rate rolling. Journal of Materials Research 38, 404–415 (2023). https://doi.org/10.1557/s43578-022-00825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00825-6

Keywords

Navigation