Skip to main content

Advertisement

Log in

Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect

  • Invited Paper
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO2 was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO2/NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg−1over 500 cycles measured @100 mAg−1).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  2. K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium-ion batteries. Science 311, 977–980 (2006)

    CAS  Google Scholar 

  3. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    CAS  Google Scholar 

  4. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced lithium-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    CAS  Google Scholar 

  5. B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrodes for lithium-ion and lithium batteries. Chem. Mater. 22, 691–714 (2010)

    CAS  Google Scholar 

  6. C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010)

    CAS  Google Scholar 

  7. M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014)

    CAS  Google Scholar 

  8. R. Mo, X. Tan, F. Li, R. Tao, J. Xu, D. Kang, Z. Wang, B. Xu, X. Wang, C. Wang, J. Li, Y. Peng, Y. Lu, Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat. Commun. 11, 1374 (2020)

    CAS  Google Scholar 

  9. M. Wang, F. Zhang, C.-S. Lee, Y. Tang, Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 7, 1700536 (2017)

    Google Scholar 

  10. J. Lin, J.-M. Lim, D.H. Youn, K. Kawashima, J.-H. Kim, Y. Liu, H. Guo, G. Henkelman, A. Heller, C.B. Mullins, Self-assembled Cu-Sn-S nanotubes with high (De)lithiation performance. ACS Nano 11, 10347–10356 (2017)

    CAS  Google Scholar 

  11. J. Liu, Y.R. Wen, P.A. van Aken, J. Maier, Y. Yu, Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 14, 6387–6392 (2014)

    CAS  Google Scholar 

  12. H.S. Im, Y.J. Cho, Y.R. Lim, C.S. Jung, D.M. Jang, J. Park, F. Shojaer, H.S. Kang, Phase evolution of tin nanocrystals in lithium-ion batteries. ACS Nano 7, 11103–11111 (2013)

    CAS  Google Scholar 

  13. J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Matter. 27, 6702–6707 (2015)

    Google Scholar 

  14. J. Han, D. Kong, W. Lv, D.-M. Tang, D. Han, C. Zhang, D. Liu, Z. Xiao, X. Zhang, J. Xiao, X. He, F.-C. Hsia, C. Zhang, Y. Tao, D. Golberg, F. Kang, L. Zhi, Q.-H. Yang, Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018)

    Google Scholar 

  15. Y. Zou, Y. Wang, Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano 5, 8108–8114 (2011)

    CAS  Google Scholar 

  16. M.J.K. Reddy, S.H. Ryu, A.M. Shanmugharaj, Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries. Nanoscale 8, 471–482 (2016)

    CAS  Google Scholar 

  17. K. Kravchyk, L. Protesescu, M.I. Bocharchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, M.V. Kovalenko, Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135, 4199–4202 (2013)

    CAS  Google Scholar 

  18. Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, H. Yuan, One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. J. Power Sources 239, 89–93 (2013)

    CAS  Google Scholar 

  19. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017)

    CAS  Google Scholar 

  20. Z.X. Huang, Y. Wang, B. Liu, D. Kong, J. Zhang, T. Chen, H.Y. Yang, Unlocking the potential of SnS2: transition metal catalyzed utilization of reversible conversion and alloying reactions. Sci. Rep. 7, 41015 (2017)

    CAS  Google Scholar 

  21. T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sources 167, 529–535 (2007)

    CAS  Google Scholar 

  22. H.S. Kim, Y.H. Chung, S.H. Kang, Y.-E. Sung, Electrochemical behaviour of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54, 3606–3610 (2009)

    CAS  Google Scholar 

  23. C. Gao, L. Li, A.-R.O. Raji, A. Kovalchuk, Z. Peng, H. Fei, Y. He, N.D. Kim, Q. Zhang, E. Xie, J.M. Tour, Tin disulfide nanoplates on graphene nanoribbons for full lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 26549–26556 (2015)

    CAS  Google Scholar 

  24. B. Qu, G. Ji, B. Ding, M. Lu, W. Chen, J.Y. Lee, Origin of the increased Li+-storage capacity of stacked SnS2/graphene nanocomposite. Chem. Electro Chem. 2, 1138–1143 (2015)

    CAS  Google Scholar 

  25. M. Satish, S. Mitani, T. Tomai, I. Honma, Ultrathin SnS2 nanoparticles on graphene nanosheets: synthesis, characterization, and Li-ion storage applications. J. Phys. Chem. C 116, 12475–12481 (2012)

    Google Scholar 

  26. D.H. Youn, S.K. Stauffer, P. Xiao, H. Park, Y. Nam, A. Dolocan, G. Henkelman, A. Heller, C.B. Mullins, Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as Lithium-ion battery anodes. ACS Nano 10, 10778–10788 (2016)

    CAS  Google Scholar 

  27. Y. Jiang, D. Song, J. Wu, Z. Wang, S. Huang, Y. Xu, Z. Chen, B. Zhao, J. Zhang, Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate Lithium/Sodium-ion battery anode materials. ACS Nano 13, 9100–9111 (2019)

    CAS  Google Scholar 

  28. H. Kong, C. Yan, C. Lv, J. Pei, G. Chen, Electric field effect in a Co3O4/TiO2 p–n junction for superior lithium-ion storage. Mater. Chem. Front. 3, 909–915 (2019)

    CAS  Google Scholar 

  29. X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)

    CAS  Google Scholar 

  30. Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high-rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016)

    CAS  Google Scholar 

  31. Y. Zhang, Z. Ma, D. Liu, S. Dou, J. Ma, M. Zhang, Z. Guo, R. Chen, S. Wang, p-Type SnO thin layers on n-type SnS2 nanosheets with enriched surface defects and embedded charge transfer for lithium-ion batteries. J. Mater. Chem. A 5, 512–518 (2017)

    CAS  Google Scholar 

  32. K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai, H. Wang, A new generation of high-performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries. Chem. Eng. J. 347, 552–562 (2018)

    CAS  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A.S. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4086–4814 (2010)

    Google Scholar 

  34. H. Zhang, Z. Zhao, Y.-N. Hou, Y. Tang, J. Liang, X. Liu, Z. Zhang, X. Wang, J. Qiu, Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. J. Mater. Chem. A 7, 9230–9240 (2019)

    CAS  Google Scholar 

  35. C. Tu, A. Peng, Z. Zhang, X. Qi, D. Zhang, M. Wang, Y. Huang, Z. Yang, Surface-seeding secondary growth for CoO@Co9S8 P-N heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium-ion storage. Chem. Eng. J 425, 130648 (2021)

    CAS  Google Scholar 

  36. T. Zhou, Y. Zheng, H. Gao, S. Min, S. Li, H. Liu, Z. Guo, Surface engineering and design strategy for surface amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv. Sci. 2, 1500027 (2015)

    Google Scholar 

  37. D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42, 15726–15734 (2013)

    CAS  Google Scholar 

  38. Z. Wang, X. Jiang, M. Pan, Y. Shi, Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed, Ordos Basin, China. Minerals 10, 377 (2020)

    CAS  Google Scholar 

  39. S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)

    CAS  Google Scholar 

  40. J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu, G. Zou, Facile synthesis of ivvi SnS nanocrystals with shape and size control: Nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2, 1699–1703 (2010)

    CAS  Google Scholar 

  41. C. Ma, X. Shao, D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium-ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012)

    CAS  Google Scholar 

  42. Z.-Y. Shi, C. Wang, Q.-S. Yang, K. Shu, Y.-W. Liu, B.-H. Han, G.G. Wallace, A highly nitrogen-doped porous graphene: an anode material for lithium-ion batteries. J. Mater. Chem. A 3, 18229–18237 (2015)

    Google Scholar 

Download references

Acknowledgments

One of the authors (AMS) acknowledges “Department of Science and Technology, New Delhi (Grant Aid: DST/TMD/MES/2K18/139)” and “Naval Research Board, New Delhi (Grant Aid: NRB/MAT/18-19/437)” for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shanmugharaj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 714 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, N., Shanmugharaj, A.M., Reddy, M.J.K. et al. Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect. Journal of Materials Research 37, 3931–3941 (2022). https://doi.org/10.1557/s43578-022-00810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00810-z

Keywords

Navigation