Skip to main content
Log in

Application of graphene with excellent dispersion stability and interfacial adsorption properties under high-frequency and high-speed conditions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The lubrication performance of graphene is reduced at high frequencies and speeds owing to the agglomeration and poor interfacial adsorption of graphene. In this study, we used a mild oxidation method to prepare graphene oxide, onto which polar nitrogen-containing groups were grafted to prepare covalently modified graphene. The modified graphene retained a graphene structure and exhibited excellent dispersion stability and interfacial adsorption properties. It was stably dispersed in 500 N base oil for more than 60 days. Tribological tests with a steel ball–steel plate friction system (rate: 75 mm/s; reciprocating frequency: 25 Hz) showed that the friction coefficient of the sliding surface was ~ 0.063 when using 500 N base oil with the modified graphene as a lubricating additive, which was approximately 47.1% lower than that when using pure 500 N base oil.

Graphical abstract

Schematic of antifriction mechanism of MG as 500N base oil additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Zhao, J. Mao, Y. Li, Y. He, J. Luo, Appl. Surf. Sci. 434, 21 (2018). https://doi.org/10.1016/j.apsusc.2017.10.119

    Article  CAS  Google Scholar 

  2. D. Berman, A. Erdemir, A.V. Sumant, Carbon 59, 167 (2013). https://doi.org/10.1016/j.carbon.2013.03.006

    Article  CAS  Google Scholar 

  3. P. Restuccia, M.C. Righi, Carbon 106, 118 (2016). https://doi.org/10.1016/j.carbon.2016.05.025

    Article  CAS  Google Scholar 

  4. Y. Xu, Y. Peng, T. You, L. Yao, J. Geng, K.D. Dearn, X. Hu, in Nanotechnology in Oil and Gas Industries. ed. by T.A. Saleh (Springer, Cham, 2018), p.151

    Chapter  Google Scholar 

  5. D. Berman, A. Erdemir, A.V. Sumant, Carbon 54, 454 (2013). https://doi.org/10.1016/j.carbon.2012.11.061

    Article  CAS  Google Scholar 

  6. L. Zhao, Z. Cai, Z. Zhang, X. Zhang, Y. Lin, J. Peng, M. Zhu, Chin. J. Mater. Res. 30, 57 (2016). https://doi.org/10.11901/1005.3093.2015.082

    Article  CAS  Google Scholar 

  7. Y. Meng, F. Su, Y. Chen, Sci. Rep. 6, 31246 (2016). https://doi.org/10.1038/srep31246

    Article  CAS  Google Scholar 

  8. D. Berman, A. Erdemir, A.V. Sumant, Mater. Today 17, 31 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  9. Y. Qiao, H. Zhao, Y. Zang, Q. Zhang, H. Liu, Chem. Ind. Eng. Prog. 2014(S1), 216 (2014)

    Google Scholar 

  10. K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Curr. Appl. Phys. 9, e128 (2009). https://doi.org/10.1016/j.cap.2008.12.054

    Article  Google Scholar 

  11. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  12. Y. Si, E.T. Samulski, Nano Lett. 8, 1679 (2008). https://doi.org/10.1021/nl080604h

    Article  CAS  Google Scholar 

  13. G. Paul, S. Shit, H. Hirani, T. Kuila, N.C. Murmu, Tribol. Int. 131, 605 (2019). https://doi.org/10.1016/j.triboint.2018.11.012

    Article  CAS  Google Scholar 

  14. J. Ding, F. Meng, J. Sui, Z. Meng, Appl. Chem. Ind. 47, 1043–1047 (2018). (in Chinese)

    Google Scholar 

  15. L. Liu, M. Zhou, Y. Mo, P. Bai, Q. Wei, L. Jin, S. You, M. Wang, L. Li, X. Chen, X. Li, Y. Tian, Friction 9, 1568 (2021). https://doi.org/10.1007/s40544-020-0442-8

    Article  CAS  Google Scholar 

  16. F. Karlický, K.K.R. Datta, M. Otyepka, R. Zbořil, ACS Nano 7, 6434 (2013). https://doi.org/10.1021/nn4024027

    Article  CAS  Google Scholar 

  17. M. Quintana, E. Vazquez, M. Prato, Acc. Chem. Res. 46, 138 (2013). https://doi.org/10.1021/ar300138e

    Article  CAS  Google Scholar 

  18. J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J.M. Gottfried, H.-P. Steinrück, E. Spiecker, F. Hauke, A. Hirsch, Nat. Chem. 3, 279 (2011). https://doi.org/10.1038/nchem.1010

    Article  CAS  Google Scholar 

  19. P. Di Pietro, G. Forte, R. Snyders, C. Satriano, C. Bittencourt, D. Thiry, Plasma Process. Polym. 17, 2000039 (2020). https://doi.org/10.1002/ppap.202000039

    Article  CAS  Google Scholar 

  20. I. Ali, A.A. Basheer, A. Kucherova, N. Memetov, T. Pasko, K. Ovchinnikov, V. Pershin, D. Kuznetsov, E. Galunin, V. Grachev, A. Tkachev, J. Mol. Liq. 279, 251 (2019). https://doi.org/10.1016/j.molliq.2019.01.113

    Article  CAS  Google Scholar 

  21. D.D. La, T.N. Truong, T.Q. Pham, H.T. Vo, N.T. Tran, T.A. Nguyen, A.K. Nadda, T.T. Nguyen, S.W. Chang, W.J. Chung, D.D. Nguyen, Nanomaterials 10, 877 (2020). https://doi.org/10.3390/nano10050877

    Article  CAS  Google Scholar 

  22. B. Gupta, N. Kumar, K. Panda, A.A. Melvin, S. Joshi, S. Dash, A.K. Tyagi, J. Phys. Chem. C 120, 2139 (2016). https://doi.org/10.1021/acs.jpcc.5b08762

    Article  CAS  Google Scholar 

  23. R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimurac, O.P. Khatri, J. Phys. Chem. A 4, 926 (2016). https://doi.org/10.1039/C5TA08640J

    Article  CAS  Google Scholar 

  24. N.A. Ismail, S. Bagheri, Mater. Sci. Eng. B 222, 34 (2017). https://doi.org/10.1016/j.mseb.2017.04.010

    Article  CAS  Google Scholar 

  25. S. Choudhary, H.P. Mungse, O.P. Khatri, J. Mater. Chem. 22, 21032 (2012). https://doi.org/10.1039/c2jm34741e

    Article  CAS  Google Scholar 

  26. H.P. Mungse, O.P. Khatri, J. Phys. Chem. C 118, 14394 (2014). https://doi.org/10.1021/jp5033614

    Article  CAS  Google Scholar 

  27. J. Ma, Y. Xiao, Y. Sun, J. Hu, Y. Wang, Nanoscale Res. Lett. 15, 26 (2020). https://doi.org/10.1186/s11671-020-3257-7

    Article  CAS  Google Scholar 

  28. P. Wu, X. Chen, C. Zhang, J. Zhang, J. Luo, J. Zhang, Friction 9, 143 (2021). https://doi.org/10.1007/s40544-019-0359-2

    Article  Google Scholar 

  29. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4, 6557 (2010). https://doi.org/10.1021/nn101781v

    Article  CAS  Google Scholar 

  30. Y. Guo, W. Guo, C. Chen, Phys. Rev. B 76, 155429 (2007). https://doi.org/10.1103/PhysRevB.76.155429

    Article  CAS  Google Scholar 

  31. F. Bonelli, N. Manini, E. Cadelano, L. Colombo, Eur. Phys. J. B 70, 449 (2009). https://doi.org/10.1140/epjb/e2009-00239-7

    Article  CAS  Google Scholar 

  32. L. Bai, N. Srikanth, B. Zhao, B. Liu, Z. Liu, K. Zhou, J. Phys. D: Appl. Phys. 49, 485302 (2016). https://doi.org/10.1088/0022-3727/49/48/485302

    Article  CAS  Google Scholar 

  33. L. Liu, M. Zhou, L. Jin, L. Li, Y. Mo, G. Su, X. Li, H. Zhu, Y. Tian, Friction 7, 199 (2019). https://doi.org/10.1007/s40544-019-0268-4

    Article  Google Scholar 

  34. K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Carbon 49, 24 (2011). https://doi.org/10.1016/j.carbon.2010.08.034

    Article  CAS  Google Scholar 

  35. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Science 321, 1815 (2008). https://doi.org/10.1126/science.1162369

    Article  CAS  Google Scholar 

  36. S. Chhetri, P. Samanta, N.C. Murmu, S.K. Srivastava, T. Kuila, Polym. Eng. Sci. 56, 1221 (2016). https://doi.org/10.1002/pen.24355

    Article  CAS  Google Scholar 

  37. S. Saha, P. Samanta, N.C. Murmu, T. Kuila, Phys. Chem. Chem. Phys. 19, 28588 (2017). https://doi.org/10.1039/C7CP05923J

    Article  CAS  Google Scholar 

  38. C.S. Chen, X.H. Chen, L.S. Xu, Z. Yang, W.H. Li, Carbon 43, 1660 (2005). https://doi.org/10.1016/j.carbon.2005.01.044

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Number 12062002), Guangxi Natural Science Foundation, China (Grant Number 2022GXNSFFA035036), Scientific Research and Technology Development Program of Guangxi, China (Grant Number AC19245071 and AC20238003), and Liuzhou Science and Technology Plan Project, China (Grant Number 2020NACC0801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Wang, M., Zhou, M. et al. Application of graphene with excellent dispersion stability and interfacial adsorption properties under high-frequency and high-speed conditions. Journal of Materials Research 37, 4326–4337 (2022). https://doi.org/10.1557/s43578-022-00802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00802-z

Keywords

Navigation