Skip to main content
Log in

Design of a quantum-spin sensor with sub-micron resolution and enhanced optical read-out ability by the nitrogen-vacancy centers in diamond

  • Article
  • FOCUS ISSUE: Quantum Materials for Sensing and Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To solve the inefficiency of optical out-coupling of the nitrogen-vacancy (NV) luminescence in bulk diamond, we propose a quantum-spin sensor based on the NV centers in diamond. The sensor is able to map out the microwave magnetic field or temperature and other distributions on a sub-micron scale. We demonstrate the implementation of a nanowire (NW) array fabricated from a regular diamond sensing layer and nano-antennas as photonic waveguides fabricated on the backside of a diamond substrate. By tuning the parameters, we used numerical modeling to find an optimal range of the NW’s parameters that allow for a large collection efficiency of the emitted photons. By systematic optimization, we have observed an optical read-out efficiency strengthened by a factor of ~ 30. Since the optimized parameters for the sensing device are in the order of hundreds of nanometers, the sensor can achieve an enhanced sensitivity with sub-micron resolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Wolf, Subpicotesla diamond magnetometry. Phys. Rev. X 5(4), 041001 (2015). https://doi.org/10.1103/PhysRevX.5.041001

    Article  CAS  Google Scholar 

  2. P. Maletinsky, A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centers. Nat. Nanotechnol. 7(5), 320–324 (2012). https://doi.org/10.1038/nnano.2012.50

    Article  CAS  Google Scholar 

  3. M.V. Gurudev Dutt, Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829), 1312–1316 (2007). https://doi.org/10.1126/science.1139831

    Article  CAS  Google Scholar 

  4. B.J.M. Hausmann, Diamond nanophotonics and applications in quantum science and technology. Phys. Status Solidi (A) 209(9), 1619–1630 (2012). https://doi.org/10.1002/pssa.201200576

    Article  CAS  Google Scholar 

  5. A. Faraon, Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109(3), 033604 (2012). https://doi.org/10.1103/PhysRevLett.109.033604

    Article  CAS  Google Scholar 

  6. G. Balasubramanian, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455(7213), 648–651 (2008). https://doi.org/10.1038/nature07278

    Article  CAS  Google Scholar 

  7. N. Bar-Gill, Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4(1), 45–53 (2013). https://doi.org/10.1038/ncomms2771

    Article  CAS  Google Scholar 

  8. H. Martin, GaN nanowire arrays for efficient optical read-out and optoelectronic control of NV centers in diamond. Nano Lett. 18(6), 3651–3660 (2018). https://doi.org/10.1021/acs.nanolett.8b00763

    Article  CAS  Google Scholar 

  9. S.A. Momenzadeh, Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15(1), 165–169 (2015). https://doi.org/10.1021/nl503326t

    Article  CAS  Google Scholar 

  10. T.M. Babinec, A diamond nanowire single-photon source. Nat. Nanotechnol. 5(3), 195–199 (2010). https://doi.org/10.1038/nnano.2010.6

    Article  CAS  Google Scholar 

  11. M. Lončar, A. Faraon, Quantum photonic networks in diamond. MRS Bull. 38(2), 144–148 (2013). https://doi.org/10.1557/mrs.2013.19

    Article  CAS  Google Scholar 

  12. C.J. Widmann, Fabrication and characterization of single crystalline diamond nanopillars with NV-centers. Diam. Relat. Mater. 54, 2–8 (2015). https://doi.org/10.1016/j.diamond.2014.10.005

    Article  CAS  Google Scholar 

  13. F. Dolde, Electric-field sensing using single diamond spins. Nat. Phys. 7(6), 459–463 (2011). https://doi.org/10.1038/nphys1969

    Article  CAS  Google Scholar 

  14. Xu. Ying, Mapping dynamical magnetic responses of ultrathin micron-size superconducting films using nitrogen-vacancy centers in diamond. Nano Lett. 19(8), 5697–5702 (2019). https://doi.org/10.1021/acs.nanolett.9b02298

    Article  CAS  Google Scholar 

  15. J. Michl, Perfect alignment and preferential orientation of nitrogen vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl. Phys. Lett. 104, 102407 (2014). https://doi.org/10.1063/1.4868128

    Article  CAS  Google Scholar 

  16. J.M. Taylor, High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4(10), 810–816 (2008). https://doi.org/10.1038/nphys1075

    Article  CAS  Google Scholar 

  17. B.J.M. Hausmann, Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19(5), 621–629 (2010). https://doi.org/10.1016/j.diamond.2010.01.011

    Article  CAS  Google Scholar 

  18. T. Zhi, High quality CVD single crystal diamonds grown on nanorods patterned diamond seed. Diam. Relat. Mater. 119, 108605 (2021). https://doi.org/10.1016/j.diamond.2021.108605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged the financial support from the National Natural Science Foundation of China (Nos. 61974059, 61674077, 61774081) and the Fundamental Research Funds for the Central Universities.

Funding

Funding was provided by National Natural Science Foundation of China (Nos. 61974059, 61674077, 61774081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Tang or Shulin Gu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Huang, Y., Tang, K. et al. Design of a quantum-spin sensor with sub-micron resolution and enhanced optical read-out ability by the nitrogen-vacancy centers in diamond. Journal of Materials Research 38, 4819–4827 (2023). https://doi.org/10.1557/s43578-022-00795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00795-9

Keywords

Navigation