Skip to main content

Advertisement

Log in

MXenes in sulfur cathodes for lithium–sulfur batteries

  • Invited Review
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries are one of the most promising candidates that could replace lithium-ion batteries (LIBs) as the dominant energy storage technology in the future. This is due to sulfur's relative abundance and affordability compared to the transition metals used in standard cathodes (such as cobalt) and their superior theoretical specific energy (2567 Wh/kg) compared to LIBs. However, these sulfur cathodes are still bogged down by 3 significant problems: polysulfide dissolution and shuttling, sluggish reaction kinetics, and significant volumetric changes in the cathode during cycling. MXenes may hold the key to making sulfur cathodes viable because they possess ideal characteristics such as high specific surface areas and tuneable electrocatalytic properties. Herein, we will explore how MXenes have been able to solve the three existing issues of polysulfide dissolution, slow kinetics, and cathode pulverization, as well as propose new potential ways they can be used in sulfur cathodes.

Graphical abstract

Maximizing the potential of sulfur cathodes: MXenes are a class of 2D materials that possess promising electrochemical properties. They have been able to solve the main issues surrounding sulfur cathodes, bringing them closer to their full potential, which when fully achieved, would make sulfur-based batteries the next-generation energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Reproduced with permission [42].

Figure 2

Reproduced with permission [46].

Figure 3

Reproduced with permission [73].

Figure 4

Reproduced with permission [79].

Figure 5

Reproduced with permission [34].

Figure 6

Reproduced with permission [82].

Figure 7

Reproduced with permission [83].

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Broussely, J.P. Planchat, G. Rigobert, D. Virey, G. Sarre, Lithium-ion batteries for electric vehicles: performances of 100 Ah cells. J. Power Sources 68, 8–12 (1997)

    CAS  Google Scholar 

  2. A. Nagy, Electric aircraft—present and future. Prod. Eng. Arch. 23, 36–40 (2019)

    Google Scholar 

  3. Y.-S. Su, Y. Fu, T. Cochell, A. Manthiram, A strategic approach to recharging lithium–sulphur batteries for long cycle life. Nat. Commun. 4, 2985 (2013)

    Google Scholar 

  4. Y. Wang, Y. Zhang, H. Cheng, Z. Ni, Y. Wang, G. Xia, X. Li, X. Zeng, Research progress toward room temperature sodium sulfur batteries: a review. Molecules 26(6), 1535 (2021)

    CAS  Google Scholar 

  5. Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016)

    CAS  Google Scholar 

  6. A.Y.S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, Z.W. Seh, Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv. Energy Mater. 11, 2003493 (2021)

    CAS  Google Scholar 

  7. K. Zhu, C. Wang, Z. Chi, F. Ke, Y. Yang, A. Wang, W. Wang, L. Miao, How far away are lithium–sulfur batteries from commercialization? Front. Energy Res. (2019). https://doi.org/10.3389/fenrg.2019.00123

    Article  Google Scholar 

  8. Y. Cao, H. Chen, Y. Shen, M. Chen, Y. Zhang, L. Zhang, Q. Wang, S. Guo, H. Yang, SnS2 nanosheets anchored on nitrogen and sulfur co-doped MXene sheets for high-performance potassium-ion batteries. ACS Appl. Mater. Interfaces 13, 17668–17676 (2021)

    CAS  Google Scholar 

  9. X. Zhao, C. Wang, Z. Li, X. Hu, A. Abdul Razzaq, Z. Deng, Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J. Mater. Chem. A 9, 19282–19297 (2021)

    CAS  Google Scholar 

  10. J. Xiang, Z. Guo, Z. Yi, Y. Zhang, L. Yuan, Z. Cheng, Y. Shen, Y. Huang, Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium–sulfur batteries. J. Energy Chem. 49, 161–165 (2020)

    Google Scholar 

  11. A.Y.S. Eng, D.-T. Nguyen, V. Kumar, G.S. Subramanian, M.-F. Ng, Z.W. Seh, Tailoring binder–cathode interactions for long-life room-temperature sodium–sulfur batteries. J. Mater. Chem. A 8, 22983–22997 (2020)

    CAS  Google Scholar 

  12. S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L.A. Archer, A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016)

    CAS  Google Scholar 

  13. J.-X. Lin, Y.-X. Mo, P.-F. Zhang, Y.-Y. Li, Y.-J. Wu, S.-J. Zhang, Z.-G. Gao, J.-D. Chen, W.-F. Ren, J.-T. Li, Y. Zhou, L. Huang, S.-G. Sun, Ultrahigh sulfur content up to 93 wt% encapsulated in multilayer nanoshell of V/V2O5 composite to suppress shuttle effect of lithium–sulfur battery with high-performance. Mater. Today Energy 13, 267–276 (2019)

    Google Scholar 

  14. W. Wang, H. Yuan, Y. NuLi, J. Zhou, J. Yang, J. Wang, Sulfur@microporous carbon cathode with a high sulfur content for magnesium–sulfur batteries with nucleophilic electrolytes. J. Phys. Chem. C 122, 26764–26776 (2018)

    CAS  Google Scholar 

  15. J. Han, Y. Li, S. Li, P. Long, C. Cao, Y. Cao, W. Wang, Y. Feng, W. Feng, A low cost ultra-microporous carbon scaffold with confined chain-like sulfur molecules as a superior cathode for lithium–sulfur batteries. Sustain. Energy Fuels 2, 2187–2196 (2018)

    CAS  Google Scholar 

  16. H. Kim, M.K. Sadan, C. Kim, J. Jo, M. Seong, K.-K. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation. Chem. Eng. J. 426, 130787 (2021)

    CAS  Google Scholar 

  17. J. Wang, J. Yang, Y. Nuli, R. Holze, Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9, 31–34 (2007)

    CAS  Google Scholar 

  18. S. Ma, P. Zuo, H. Zhang, Z. Yu, C. Cui, M. He, G. Yin, Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries. Chem. Commun. 55, 5267–5270 (2019)

    CAS  Google Scholar 

  19. M. Zheng, Y. Chi, Q. Hu, H. Tang, X. Jiang, L. Zhang, S. Zhang, H. Pang, Q. Xu, Carbon nanotube-based materials for lithium–sulfur batteries. J. Mater. Chem. A 7, 17204–17241 (2019)

    CAS  Google Scholar 

  20. Y. Li, X. Wang, L. Wang, D. Jia, Y. Yang, X. Liu, M. Sun, Z. Zhao, J. Qiu, Ni@Ni3N embedded on three-dimensional carbon nanosheets for high-performance lithium/sodium–sulfur batteries. ACS Appl. Mater. Interfaces 13, 48536–48545 (2021)

    CAS  Google Scholar 

  21. D. Guo, H. Wei, X. Chen, M. Liu, F. Ding, Z. Yang, Y. Yang, S. Wang, K. Yang, S. Huang, 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium–sulfur batteries. J. Mater. Chem. A 5, 18193–18206 (2017)

    CAS  Google Scholar 

  22. A.A. Abdelkader, N. Norouzi, D.D. Rodene, A. Alzharani, R.B. Gupta, H.M. El-Kadri, Electrocatalytic cathodes based on cobalt nanoparticles supported on nitrogen-doped porous carbon by strong electrostatic adsorption for advanced lithium–sulfur batteries. Energy Fuels 34, 13038–13047 (2020)

    CAS  Google Scholar 

  23. X. Li, Y. Tang, L. Liu, Y. Gao, C. Zhu, Y. NuLi, T. Yang, 2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium–lithium-ion batteries. J. Mater. Sci. 56, 2464–2473 (2021)

    CAS  Google Scholar 

  24. D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui, B. Li, W. Chen, C. Liu, J. Shang, S. Yang, Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv. Funct. Mater. 30, 2002471 (2020)

    CAS  Google Scholar 

  25. W. Zhang, S. Li, A. Zhou, H. Song, Z. Cui, L. Du, Recent advances and perspectives in lithium–sulfur pouch cells. Molecules 26(21), 6341 (2021)

    CAS  Google Scholar 

  26. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    CAS  Google Scholar 

  27. K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-Y. Jiang, J. Tang, B. Anasori, Z.W. Seh, Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834–10864 (2020)

    CAS  Google Scholar 

  28. C.E. Shuck, Y. Gogotsi, Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020)

    CAS  Google Scholar 

  29. K.L. Firestein, J.E. von Treifeldt, D.G. Kvashnin, J.F.S. Fernando, C. Zhang, A.G. Kvashnin, E.V. Podryabinkin, A.V. Shapeev, D.P. Siriwardena, P.B. Sorokin, D. Golberg, Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett. 20, 5900–5908 (2020)

    CAS  Google Scholar 

  30. W. Bao, C.E. Shuck, W. Zhang, X. Guo, Y. Gogotsi, G. Wang, Boosting performance of Na–S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019)

    CAS  Google Scholar 

  31. W. Bao, X. Xie, J. Xu, X. Guo, J. Song, W. Wu, D. Su, G. Wang, Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chem. Eur. J. 23, 12613–12619 (2017)

    CAS  Google Scholar 

  32. Q. Zhao, Q. Zhu, J. Miao, P. Zhang, B. Xu, 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale 11, 8442–8448 (2019)

    CAS  Google Scholar 

  33. C. Song, W. Zhang, Q. Jin, Y. Zhao, Y. Zhang, X. Wang, Z. Bakenov, Oxidized Nb2C MXene as catalysts for lithium–sulfur batteries: mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides. J. Mater. Sci. Technol. 119, 45–52 (2022)

    Google Scholar 

  34. C. Yang, Y. Li, W. Peng, F. Zhang, X. Fan, In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium–sulfur batteries. Chem. Eng. J. 427, 131792 (2022)

    CAS  Google Scholar 

  35. Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li, X. Ge, W. Yang, S. Guo, Rational design of MXene/1T–2H MoS2–C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018)

    Google Scholar 

  36. Y.-H. Liu, C.-Y. Wang, S.-L. Yang, F.-F. Cao, H. Ye, 3D MXene architectures as sulfur hosts for high-performance lithium–sulfur batteries. J. Energy Chem. 66, 429–439 (2022)

    CAS  Google Scholar 

  37. X. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020)

    CAS  Google Scholar 

  38. D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang, Y. Gao, X. Xiao, Y. Gogotsi, X. Wang, G. Chen, Y. Wei, Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31, 2010987 (2021)

    CAS  Google Scholar 

  39. Y. Wu, P. Nie, J. Wang, H. Dou, X. Zhang, Few-Layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces 9, 39610–39617 (2017)

    CAS  Google Scholar 

  40. Y. An, Y. Tian, C. Liu, S. Xiong, J. Feng, Y. Qian, Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 15, 15259–15273 (2021)

    CAS  Google Scholar 

  41. X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015)

    CAS  Google Scholar 

  42. O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019)

    CAS  Google Scholar 

  43. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221, 351–358 (2012)

    CAS  Google Scholar 

  44. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015)

    CAS  Google Scholar 

  45. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

    CAS  Google Scholar 

  46. A. Sohan, P. Banoth, M. Aleksandrova, A. Nirmala Grace, P. Kollu, Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. Int. J. Energy Res. 45, 19746–19771 (2021)

    CAS  Google Scholar 

  47. J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai, Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841–3850 (2017)

    CAS  Google Scholar 

  48. J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. Huang, A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55, 5008–5013 (2016)

    CAS  Google Scholar 

  49. M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, M.W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014)

    CAS  Google Scholar 

  50. M.H. Tran, T. Schäfer, A. Shahraei, M. Dürrschnabel, L. Molina-Luna, U.I. Kramm, C.S. Birkel, Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Appl. Energy Mater. 1, 3908–3914 (2018)

    CAS  Google Scholar 

  51. D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul, G. Deysher, J.R. Morante, W. Porzio, H.N. Alshareef, Y. Gogotsi, Synthesis and electrochemical properties of 2D molybdenum vanadium carbides—solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020)

    CAS  Google Scholar 

  52. M. Han, K. Maleski, C.E. Shuck, Y. Yang, J.T. Glazar, A.C. Foucher, K. Hantanasirisakul, A. Sarycheva, N.C. Frey, S.J. May, V.B. Shenoy, E.A. Stach, Y. Gogotsi, Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020)

    CAS  Google Scholar 

  53. G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. Gogotsi, Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020)

    CAS  Google Scholar 

  54. P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang, B. Haines, S.J. May, S.J.L. Billinge, Y. Gogotsi, 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9, 17722–17730 (2017)

    CAS  Google Scholar 

  55. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)

    CAS  Google Scholar 

  56. M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013)

    CAS  Google Scholar 

  57. R. Meshkian, L.-Å. Näslund, J. Halim, J. Lu, M.W. Barsoum, J. Rosen, Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 108, 147–150 (2015)

    CAS  Google Scholar 

  58. B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017)

    CAS  Google Scholar 

  59. R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim, J. Thörnberg, Q. Tao, S. Li, S. Intikhab, J. Snyder, M.W. Barsoum, M. Yildizhan, J. Palisaitis, L. Hultman, P.O.Å. Persson, J. Rosen, W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30, 1706409 (2018)

    Google Scholar 

  60. I. Persson, A. el Ghazaly, Q. Tao, J. Halim, S. Kota, V. Darakchieva, J. Palisaitis, M.W. Barsoum, J. Rosen, P.O.Å. Persson, Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14, 1703676 (2018)

    Google Scholar 

  61. J. Halim, J. Palisaitis, J. Lu, J. Thörnberg, E.J. Moon, M. Precner, P. Eklund, P.O.Å. Persson, M.W. Barsoum, J. Rosen, Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl. Nano Mater. 1, 2455–2460 (2018)

    CAS  Google Scholar 

  62. N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018)

    CAS  Google Scholar 

  63. Z. Chen, S. Huang, X. Yuan, X. Gan, N. Zhou, A comparative study of M2CS2 and M2CO2 MXenes as anode materials for lithium ion batteries. Appl. Surf. Sci. 544, 148861 (2021)

    CAS  Google Scholar 

  64. E.M.D. Siriwardane, I. Demiroglu, C. Sevik, F.M. Peeters, D. Çakır, Assessment of sulfur-functionalized MXenes for Li-ion battery applications. J. Phys. Chem. C 124, 21293–21304 (2020)

    CAS  Google Scholar 

  65. V. Kamysbayev, S. Filatov Alexander, H. Hu, X. Rui, F. Lagunas, D. Wang, F. Klie Robert, V. Talapin Dmitri, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020)

    CAS  Google Scholar 

  66. D. Wang, F. Li, R. Lian, J. Xu, D. Kan, Y. Liu, G. Chen, Y. Gogotsi, Y. Wei, A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13, 11078–11086 (2019)

    CAS  Google Scholar 

  67. H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10, 1476–1486 (2017)

    CAS  Google Scholar 

  68. H. Wang, Y. Shao, H. Pan, X. Feng, Y. Chen, Y.-S. Liu, E.D. Walter, M.H. Engelhard, K.S. Han, T. Deng, G. Ren, D. Lu, X. Lu, W. Xu, C. Wang, J. Feng, K.T. Mueller, J. Guo, K.R. Zavadil, J.-G. Zhang, A lithium–sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy 76, 105041 (2020)

    CAS  Google Scholar 

  69. M. Sadd, S. De Angelis, S. Colding-Jørgensen, D. Blanchard, R.E. Johnsen, S. Sanna, E. Borisova, A. Matic, J.R. Bowen, Visualization of dissolution–precipitation processes in lithium–sulfur batteries. Adv. Energy Mater. 12, 2103126 (2022)

    CAS  Google Scholar 

  70. A. Kawase, S. Shirai, Y. Yamoto, R. Arakawa, T. Takata, Electrochemical reactions of lithium–sulfur batteries: an analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 16, 9344–9350 (2014)

    CAS  Google Scholar 

  71. Q. Zhang, X. Zhang, Y. Xiao, C. Li, H.H. Tan, J. Liu, Y. Wu, Theoretical insights into the favorable functionalized Ti2C-based MXenes for lithium–sulfur batteries. ACS Omega 5, 29272–29283 (2020)

    CAS  Google Scholar 

  72. T. Yim, M.-S. Park, J.-S. Yu, K.J. Kim, K.Y. Im, J.-H. Kim, G. Jeong, Y.N. Jo, S.-G. Woo, K.S. Kang, I. Lee, Y.-J. Kim, Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013)

    CAS  Google Scholar 

  73. C. Wen, D. Guo, X. Zheng, H. Li, G. Sun, Hierarchical nMOF-867/MXene nanocomposite for chemical adsorption of polysulfides in lithium–sulfur batteries. ACS Appl. Energy Mater. 4, 8231–8241 (2021)

    CAS  Google Scholar 

  74. X. Tang, R. Gan, L. Tan, C. Tong, C. Li, Z. Wei, 3D net-like GO-d-Ti3C2Tx MXene aerogels with catalysis/adsorption dual effects for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 13, 55235–55242 (2021)

    CAS  Google Scholar 

  75. Q. Zhao, R. Wang, Y. Zhang, G. Huang, B. Jiang, C. Xu, F. Pan, The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium–sulfur batteries. J. Magnes. Alloy 9, 78–89 (2021)

    CAS  Google Scholar 

  76. X. Liu, X. Shao, F. Li, M. Zhao, Anchoring effects of S-terminated Ti2C MXene for lithium–sulfur batteries: a first-principles study. Appl. Surf. Sci. 455, 522–526 (2018)

    CAS  Google Scholar 

  77. S.-Y. Qiu, C. Wang, Z.-X. Jiang, L.-S. Zhang, L.-L. Gu, K.-X. Wang, J. Gao, X.-D. Zhu, G. Wu, Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12, 16678–16684 (2020)

    CAS  Google Scholar 

  78. M. Cheng, R. Yan, Z. Yang, X. Tao, T. Ma, S. Cao, F. Ran, S. Li, W. Yang, C. Cheng, Polysulfide catalytic materials for fast-kinetic metal–sulfur batteries: principles and active centers. Adv. Sci. 9, 2102217 (2022)

    CAS  Google Scholar 

  79. W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019)

    CAS  Google Scholar 

  80. H. Wang, S.-A. He, Z. Cui, C. Xu, J. Zhu, Q. Liu, G. He, W. Luo, R. Zou, Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium–sulfur batteries. Chem. Eng. J. 420, 129693 (2021)

    CAS  Google Scholar 

  81. W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S.-Z. Qiao, Y. Wan, Q.-H. Yang, Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 33, 2101006 (2021)

    CAS  Google Scholar 

  82. Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013)

    Google Scholar 

  83. K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang, C. Song, Y. Wu, Y. Liu, Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020)

    CAS  Google Scholar 

  84. R. Lukatskaya Maria, O. Mashtalir, E. Ren Chang, Y. Dall’Agnese, P. Rozier, L. Taberna Pierre, M. Naguib, P. Simon, W. BarsoumMichel, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013)

    CAS  Google Scholar 

  85. Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016)

    Google Scholar 

  86. C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, Y. Gogotsi, Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Singapore National Research Foundation (NRF-NRFF2017-04) and Agency for Science, Technology and Research (Central Research Fund Award).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data and writing the manuscript.

Corresponding authors

Correspondence to Hui Ying Yang or Zhi Wei Seh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A.J.Y., Lieu, W.Y., Yang, H.Y. et al. MXenes in sulfur cathodes for lithium–sulfur batteries. Journal of Materials Research 37, 3890–3905 (2022). https://doi.org/10.1557/s43578-022-00774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00774-0

Keywords

Navigation