Skip to main content
Log in

Improving the electrochemical properties of the Li-rich cathode material 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 by coating the bi-functional amorphous LiNbO3

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A uniform and skinny amorphous LiNbO3 coating was parceled on the 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 (OLO) surface by liquid deposition method. The experimental outcomes confirmed LiNbO3 coating not only played the role of inert protective layer, but also played the role of rapid transport of Li+, which contributed to enhance the electrochemical performances of OLO. It is noteworthy that the initial discharge capacity of the sample (LNbO@OLO-10) with 1 wt% cladding (3–5 nm thickness) at 0.1C rate was 280.5 mAh g−1, while that of the pristine material (bare-OLO) was 255.4 mAh g−1. After 100 cycles at 0.5C rate, the capacity retention rate of LNbO@OLO-10 (82.05%) was higher than that of bare-OLO (72.45%). The discharge capacity of LNbO@OLO-10 was still 104.18 mAh g−1 at 5C rate, whereas bare-OLO was purely 70.34 mAh g−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

We declare that all data generated or analyzed during this study are included in this published article [and its supplementary information files]. And the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11(1), 1 (2020)

    Article  Google Scholar 

  2. S. Hu, A.S. Pillai, G. Liang, W.K. Pang, H. Wang, Q. Li, Z. Guo, Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives (Springer, Singapore, 2019)

    Google Scholar 

  3. A. Kraytsberg, Y. Ein-Eli, A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better … A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2(8), 922 (2012)

    Article  CAS  Google Scholar 

  4. M. Hu, X. Pang, Z. Zhou, Review recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229 (2013)

    Article  CAS  Google Scholar 

  5. N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133(12), 4404 (2011)

    Article  CAS  Google Scholar 

  6. M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17(30), 3112 (2007)

    Article  CAS  Google Scholar 

  7. O. Toprakci, H.A.K. Toprakci, Y. Li, L. Ji, L. Xue, H. Lee, S. Zhang, X. Zhang, Synthesis and characterization of xLi2MnO3(1−X)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources 241, 522 (2013)

    Article  CAS  Google Scholar 

  8. A.R. Armstrong, M. Holzapfel, P. Novák, C.S. Johnson, S.H. Kang, M.M. Thackeray, P.G. Bruce, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128(26), 8694 (2006)

    Article  CAS  Google Scholar 

  9. Y. Wang, Z. Yang, Y. Qian, L. Gu, H. Zhou, New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 27(26), 3915 (2015)

    Article  CAS  Google Scholar 

  10. H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, High-energy “composite” layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys. Chem. Chem. Phys. 14(18), 6584 (2012)

    Article  Google Scholar 

  11. X. Yu, Y. Lyu, L. Gu, H. Wu, S.M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.W. Nam, X.Q. Yang, Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4(5), 1 (2014)

    Article  Google Scholar 

  12. S. Hy, F. Felix, J. Rick, W.N. Su, B.J. Hwang, Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136(3), 999 (2014)

    Article  CAS  Google Scholar 

  13. A.D. Robertson, P.G. Bruce, Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15(13), 1984 (2003)

    Article  CAS  Google Scholar 

  14. D. Luo, G. Li, C. Fu, J. Zheng, J. Fan, Q. Li, L. Li, A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries. Adv. Energy Mater. 4(11), 1 (2014)

    Article  Google Scholar 

  15. Z. Liao, J. Kang, Q. Luo, C. Pan, J. Chen, X. Mo, H. Zou, W. Yang, S. Chen, Effect of different calcination temperatures on the structure and properties of zirconium-based coating layer modified cathode material Li1.2Mn0.54Ni0.13Co0.13O2. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-021-01345-8

    Article  Google Scholar 

  16. P.K. Nayak, J. Grinblat, M. Levi, E. Levi, S. Kim, J.W. Choi, D. Aurbach, Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 6(8), 1 (2016)

    Article  Google Scholar 

  17. G. Wang, X. Wang, L. Yi, R. Yu, M. Liu, X. Yang, Preparation and performance of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 with a fusiform porous micro-nano structure. J. Mater. Chem. A 4(41), 15929 (2016)

    Article  CAS  Google Scholar 

  18. S.Q. Yang, P.B. Wang, H.X. Wei, L.B. Tang, X.H. Zhang, Z.J. He, Y.J. Li, H. Tong, J.C. Zheng, Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 63(July), 103889 (2019)

    Article  CAS  Google Scholar 

  19. E. Zhao, X. Liu, H. Zhao, X. Xiao, Z. Hu, Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem. Commun. 51(44), 9093 (2015)

    Article  CAS  Google Scholar 

  20. X.D. Zhang, J.L. Shi, J.Y. Liang, L.P. Wang, Y.X. Yin, K.C. Jiang, Y.G. Guo, An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. J. Power Sources 426(May 2018), 242 (2019)

    Article  CAS  Google Scholar 

  21. F. Ning, H. Shang, B. Li, N. Jiang, R. Zou, D. Xia, Surface thermodynamic stability of Li-rich Li2MnO3: effect of defective graphene. Energy Storage Mater. 22(January), 113 (2019)

    Article  Google Scholar 

  22. J.Z. Kong, C.L. Wang, X. Qian, G.A. Tai, A.D. Li, D. Wu, H. Li, F. Zhou, C. Yu, Y. Sun, D. Jia, W.P. Tang, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2. Electrochim. Acta 174, 542 (2015)

    Article  CAS  Google Scholar 

  23. X. Zhang, I. Belharouak, L. Li, Y. Lei, J.W. Elam, A. Nie, X. Chen, R.S. Yassar, R.L. Axelbaum, Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3(10), 1299 (2013)

    Article  CAS  Google Scholar 

  24. W. Pan, W. Peng, G. Yan, H. Guo, Z. Wang, X. Li, W. Gui, J. Wang, N. Chen, Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 coating. Energy Technol. 6(11), 2139 (2018)

    Article  CAS  Google Scholar 

  25. H. Yu, Y. Gao, X. Liang, Slightly fluorination of Al2O3 ALD coating on Li1.2Mn0.54Co0.13Ni0.13O2 electrodes: interface reaction to create stable solid permeable interphase layer. J. Electrochem. Soc. 166(10), A2021 (2019)

    Article  CAS  Google Scholar 

  26. Z. Chen, G.T. Kim, D. Bresser, T. Diemant, J. Asenbauer, S. Jeong, M. Copley, R.J. Behm, J. Lin, Z. Shen, S. Passerini, MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics. Adv. Energy Mater. 8(27), 1 (2018)

    Google Scholar 

  27. Y.K. Sun, M.J. Lee, C.S. Yoon, J. Hassoun, K. Amine, B. Scrosati, The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24(9), 1192 (2012)

    Article  CAS  Google Scholar 

  28. K. Yang, B. Niu, Y. Liu, J. Zhong, J. Li, Understanding the mechanism of MgF2 modification on the electrochemical performance of lithium-rich layered oxides. Int. J. Electrochem. Sci. 14(4), 3139 (2019)

    Article  CAS  Google Scholar 

  29. X. Liu, T. Huang, A. Yu, Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim. Acta 163, 82 (2015)

    Article  CAS  Google Scholar 

  30. Z.J. Zhang, S.L. Chou, Q.F. Gu, H.K. Liu, H.J. Li, K. Ozawa, J.Z. Wang, Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3. ACS Appl. Mater. Interfaces 6(24), 22155 (2014)

    Article  CAS  Google Scholar 

  31. C. Yu, H. Wang, X. Guan, J. Zheng, L. Li, Conductivity and electrochemical performance of cathode xLi2MnO3(1−X)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J. Alloys Compd. 546, 239 (2013)

    Article  CAS  Google Scholar 

  32. S. Kim, C. Kim, J.K. Noh, S. Yu, S.J. Kim, W. Chang, W.C. Choi, K.Y. Chung, B.W. Cho, Synthesis of layered-layered xLi2MnO3(1–x)LiMO2 (M = Mn, Ni, Co) nanocomposite electrodes materials by mechanochemical process. J. Power Sources 220, 422 (2012)

    Article  CAS  Google Scholar 

  33. C.J. Jafta, K. Raju, M.K. Mathe, N. Manyala, K.I. Ozoemena, Microwave irradiation controls the manganese oxidation states of nanostructured (Li[Li0.2Mn0.52Ni0.13Co0.13Al0.02]O2) layered cathode materials for high-performance lithium ion batteries. J. Electrochem. Soc. 162(4), A768 (2015)

    Article  CAS  Google Scholar 

  34. Y. Xiang, Z. Sun, J. Li, X. Wu, Z. Liu, L. Xiong, Z. He, B. Long, C. Yang, Z. Yin, Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol–gel method. Ceram. Int. 43(2), 2320 (2017)

    Article  CAS  Google Scholar 

  35. Y.J. Lim, S.M. Lee, H. Lim, B. Moon, K.S. Han, J.H. Kim, J.H. Song, J.S. Yu, W. Cho, M.S. Park, Amorphous Li–Zr–O layer coating on the surface of high-Ni cathode materials for lithium ion batteries. Electrochim. Acta 282, 311 (2018)

    Article  CAS  Google Scholar 

  36. Z. Yang, W. Xiang, Z. Wu, F. He, J. Zhang, Y. Xiao, B. Zhong, X. Guo, Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int. 43(4), 3866 (2017)

    Article  CAS  Google Scholar 

  37. T. Teng, L. Xiao, J. Zheng, D. Wen, H. Chen, Y. Zhu, High-Ni layered LiNi0.83Co0.11Mn0.06O2 modified by Nb for Li-ion batteries. Ceram. Int. 48(6), 8680 (2022)

    Article  CAS  Google Scholar 

  38. X. Li, M. Xu, Y. Chen, B.L. Lucht, Surface study of electrodes after long-term cycling in Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells. J. Power Sources 248, 1077 (2014)

    Article  CAS  Google Scholar 

  39. D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu, Y. Fan, J. Ru, Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta 188, 48 (2016)

    Article  CAS  Google Scholar 

  40. H. Kim, D. Byun, W. Chang, H.G. Jung, W. Choi, A nano-LiNbO3 coating layer and diffusion-induced surface control towards high-performance 5 V spinel cathodes for rechargeable batteries. J. Mater. Chem. A 5(47), 25077 (2017)

    Article  CAS  Google Scholar 

  41. D. Liu, Y. Bai, S. Zhao, W. Zhang, Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J. Power Sources 219, 333 (2012)

    Article  CAS  Google Scholar 

  42. J. Reed, G. Ceder, A. Van Der Ven, Layered-to-spinel phase transition in LixMnO2. Electrochem. Solid-State Lett. 4(6), 2 (2001)

    Article  Google Scholar 

  43. Q.H. Wu, M. Liu, W. Jaegermann, X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater. Lett. 59(16), 1980 (2005)

    Article  CAS  Google Scholar 

  44. H. Sclar, J. Sicklinger, E.M. Erickson, S. Maiti, J. Grinblat, M. Talianker, F. Amalraj Susai, L. Burstein, H. Beyer, L. Hartmann, G. Avruschenko, H.A. Gasteiger, B. Markovsky, D. Aurbach, Enhancement of electrochemical performance of lithium and manganese-rich cathode materials via thermal treatment with SO2. J. Electrochem. Soc. 167(11), 110563 (2020)

    Article  CAS  Google Scholar 

  45. Y. Lee, T.H. Kim, Y.K. Kwon, J. Shin, E.A. Cho, Selective formation of the Li4Mn5O12 surface spinel phase in sulfur-doped Li-excess-layered cathode materials for improved cycle life. ACS Sustain. Chem. Eng. 8(21), 8037 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Major Science and Technology Research of Guangxi Department of Funded Projects (Grant Number 1114022-15).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Writing-original draft, Data curation, Investigation, Conceptualization. MY: Writing-original draft, Data curation, Funding acquisition. HL: Data curation. JL: Investigation, Supervision. SX: Writing-review & editing. TW: Investigation, Supervision. JY: Software.

Corresponding author

Correspondence to Mingliang Yuan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yuan, M., Liu, H. et al. Improving the electrochemical properties of the Li-rich cathode material 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 by coating the bi-functional amorphous LiNbO3. Journal of Materials Research 37, 3831–3841 (2022). https://doi.org/10.1557/s43578-022-00760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00760-6

Keywords

Navigation