Abstract
Boron nitride nanotubes have been proposed of having great potential in various applications due to their outstanding properties such as high thermal conductivity and excellent chemical stability. Here, we present a template-assisted method of synthesizing vertically-aligned boron nitride nanotubes (VA-BNNTs) from vertically-aligned single-walled carbon nanotubes (VA-SWCNTs). This approach involves a chemical vapor deposition of boron nitride layers coating onto VA-SWCNTs first and subsequent removal of VA-SWCNTs by the oxidation in pure oxygen. The obtained VA-SWCNTs covered by BNNTs and VA-BNNTs arrays retain a highly ordered vertically aligned structure. The thermal stability of VA-SWCNTs was enhanced by coating with BNNTs. The structure and crystalline conditions were characterized by scanning electron microscope and transmission electron microscope. The chemical composition of samples was investigated by UV–Vis–NIR absorption spectroscopy and Raman spectroscopy. Boron nitride coating starts onto VA-SWCNTs from the top of the VA-SWCNTs array, which is confirmed by NanoSIMS characterization.
Graphical abstract
Similar content being viewed by others
Data availability
The data in the current study are available from the corresponding author on reasonable request.
References
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966 (1995)
A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49(7), 5081 (1994)
T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, D. Golberg, Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 114(10), 4340 (2010)
C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8), 6571 (2011)
T. Terao, Y. Bando, M. Mitome, C. Zhi, C. Tang, D. Golberg, Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. J. Phys. Chem. C 113(31), 13605 (2009)
L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457 (2014)
Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes, pronounced resistance to oxidation. Appl. Phys. Lett. 84(13), 2430 (2004)
L.H. Li, Y. Chen, M.Y. Lin, A.M. Glushenkov, B.M. Cheng, J. Yu, Single deep ultraviolet light emission from boron nitride nanotube film. Appl. Phys. Lett. 97(14), 141104 (2010)
Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932 (2007)
R. Czerw, S. Webster, D.L. Carroll, S.M.C. Vieira, P.R. Birkett, C.A. Rego, S. Roth, Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 83(8), 1617 (2003)
D. Golberg, Y. Bando, K. Kurashima, T. Sato, Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44(8–9), 1561 (2001)
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979 (2010)
D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72(16), 1966 (1998)
O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, W.E. Buhro, CVD growth of boron nitride nanotubes. Chem. Mater. 12(7), 1808 (2000)
R. Ma, Y. Bando, T. Sato, K. Kurashima, Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 13(9), 2965 (2001)
J.K. Myung, S. Chatterjee, M.K. Seung, E.A. Stach, M.G. Bradley, M.J. Pender, L.G. Sneddon, B. Maruyama, Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. Nano Lett. 8(10), 3298 (2008)
M.W. Smith, K.C. Jordan, C. Park, J.W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condensermethod. Nanotechnology 20(50), 505604 (2009)
Y. Chen, J. Fitz Gerald, J.S. Williams, S. Bulcock, Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299(3–4), 260 (1999)
Y. Chen, L.T. Chadderton, J.F. Gerald, J.S. Williams, A solid-state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74(20), 2960 (1999)
Y. Chen, M. Conway, J.S. Williams, J. Zou, Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res. 17(8), 1896 (2002)
J.D. Fitz Gerald, Y. Chen, M.J. Conway, Nanotube growth during annealing of mechanically milled Boron. Appl. Phys. A 76(1), 107 (2003)
J. Yu, Y. Chen, R. Wuhrer, Z. Liu, S.P. Ringer, In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 17(20), 5172 (2005)
W. Han, Y. Bando, K. Kurashima, T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73(21), 3085 (1998)
D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69(14), 2045 (1998)
D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, K. Tamiya, H. Yusa, Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chem. Phys. Lett. 279(3–4), 191 (1997)
T. Laude, Y. Matsui, A. Marraud, B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 76(22), 3239 (2000)
C. Tang, Y. Bando, T. Sato, K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2(12), 1290 (2002)
A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 14(8), 4881 (2014)
K.S. Kim, M. Couillard, H. Shin, M. Plunkett, D. Ruth, C.T. Kingston, B. Simard, Role of hydrogen in high-yield growth of boron nitride nanotubes at atmospheric pressure by induction thermal plasma. ACS Nano 12(1), 884 (2018)
C.H. Lee, M. Xie, V. Kayastha, J. Wang, Y.K. Yap, Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22(5), 1782 (2010)
B.E. Belkerk, A. Achour, D. Zhang, S. Sahli, M.A. Djouadi, Y.K. Yap, Thermal conductivity of vertically aligned boron nitride nanotubes. Appl. Phys. Express 9(7), 075002 (2016)
J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 5(12), 2528 (2005)
X.Z. Wang, Q. Wu, Z. Hu, Y. Chen, Template-directed synthesis of boron nitride nanotube arrays by microwave plasma chemical reaction. Electrochim. Acta 52(8), 2841 (2007)
R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan, M. Wei, E.H.T. Teo, Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition. Chem. Mater. 27(20), 7156 (2015)
L. Jing, R.Y. Tay, H. Li, S.H. Tsang, J. Huang, D. Tan, B. Zhang, E.H.T. Teo, A.I.Y. Tok, Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale 8(21), 11114 (2016)
L. Jing, M.K. Samani, B. Liu, H. Li, R.Y. Tay, S.H. Tsang, O. Cometto, A. Nylander, J. Liu, E.H.T. Teo, A.I.Y. Tok, Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl. Mater. Interfaces 9(17), 14555 (2017)
Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13), 2941 (2000)
E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006)
J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), R2514 (1999)
S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000)
F. Li, H.M. Cheng, S. Bai, G. Su, M.S. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77(20), 3161 (2000)
M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552 (2000)
M. Ouyang, J.-L. Huang, C.M. Lieber, Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1018 (2002)
P. Diao, Z. Liu, Vertically aligned single-walled carbon nanotubes by chemical assembly – methodology, properties, and applications. Adv. Mater. 22(13), 1430 (2010)
Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385(3–4), 298 (2004)
Y. Zheng, A. Kumamoto, K. Hisama, K. Otsuka, G. Wickerson, Y. Sato, M. Liu, T. Inoue, S. Chiashi, D.M. Tang, Q. Zhang, A. Anisimov, E.I. Kauppinen, Y. Li, K. Suenaga, Y. Ikuhara, S. Maruyama, R. Xiang, One-dimensional van der Waals heterostructures, growth mechanism and handedness correlation revealed by nondestructive TEM. Proc. Natl. Acad. Sci. USA (2021). https://doi.org/10.1073/pnas.2107295118
R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E.I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama, One-dimensional van der Waals heterostructures. Science 367(6477), 537 (2020)
T.H. Yuzuriha, D.W. Hess, Structural and optical properties of plasma-deposited boron nitride films. Thin Solid Films 140(2), 199 (1986)
Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10(10), 4134 (2010)
K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3(10), 591 (2009)
M. Liu, H. An, A. Kumamoto, T. Inoue, S. Chiashi, R. Xiang, S. Maruyama, Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon 146, 413 (2019)
J.A. Talla, Stability and electronic properties of hybrid coaxial carbon nanotubes–boron nitride nanotubes under the influence of electric field. Appl. Phys. A 127(8), 628 (2021)
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614 (2013)
G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride, Ab initio density functional calculations. Phys. Rev. B 76(7), 73103 (2007)
D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77(13), 1979 (2000)
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47 (2005)
P.T. Araujo, S.K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M.A. Pimenta, A. Jorio, Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98(6), 67401 (2007)
R. Geick, C.H. Perry, G. Rupprecht, Normal modes in hexagonal boron nitride. Phys. Rev. 146(2), 543 (1966)
R. Arenal, X. Blase, A. Loiseau, Boron-nitride and boron-carbonitride nanotubes, synthesis, characterization and theory. Adv. Phys. 59(2), 101 (2010)
Acknowledgments
Part of this work was supported by JSPS KAKENHI Grant Nos. JP19H02543, JP20H00220, JP20KK0114, JP22K04874 and by JST, CREST Grant No. JPMJCR20B5, Japan. Part of the work was conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by the “Nanotechnology Platform” of the MEXT, Japan, Grant No. JPMXP09A20UT0063. M.L. acknowledges the support from JSPS Grant-in-Aid for Young Scientist Grant No. JP19J13441. S.W. acknowledges the support from Quantum Science and Technology Fellowship Program (Q-STEP).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing financial interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, M., Wang, S., Zheng, Y. et al. Synthesis of vertically aligned boron nitride nanotubes with a template of single-walled carbon nanotubes. Journal of Materials Research 37, 4428–4437 (2022). https://doi.org/10.1557/s43578-022-00759-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00759-z