Skip to main content

Advertisement

Log in

Synthesis of vertically aligned boron nitride nanotubes with a template of single-walled carbon nanotubes

  • Invited Paper
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotubes have been proposed of having great potential in various applications due to their outstanding properties such as high thermal conductivity and excellent chemical stability. Here, we present a template-assisted method of synthesizing vertically-aligned boron nitride nanotubes (VA-BNNTs) from vertically-aligned single-walled carbon nanotubes (VA-SWCNTs). This approach involves a chemical vapor deposition of boron nitride layers coating onto VA-SWCNTs first and subsequent removal of VA-SWCNTs by the oxidation in pure oxygen. The obtained VA-SWCNTs covered by BNNTs and VA-BNNTs arrays retain a highly ordered vertically aligned structure. The thermal stability of VA-SWCNTs was enhanced by coating with BNNTs. The structure and crystalline conditions were characterized by scanning electron microscope and transmission electron microscope. The chemical composition of samples was investigated by UV–Vis–NIR absorption spectroscopy and Raman spectroscopy. Boron nitride coating starts onto VA-SWCNTs from the top of the VA-SWCNTs array, which is confirmed by NanoSIMS characterization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data in the current study are available from the corresponding author on reasonable request.

References

  1. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966 (1995)

    Article  CAS  Google Scholar 

  2. A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49(7), 5081 (1994)

    Article  CAS  Google Scholar 

  3. T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, D. Golberg, Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 114(10), 4340 (2010)

    Article  CAS  Google Scholar 

  4. C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8), 6571 (2011)

    Article  CAS  Google Scholar 

  5. T. Terao, Y. Bando, M. Mitome, C. Zhi, C. Tang, D. Golberg, Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. J. Phys. Chem. C 113(31), 13605 (2009)

    Article  CAS  Google Scholar 

  6. L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457 (2014)

    Article  CAS  Google Scholar 

  7. Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes, pronounced resistance to oxidation. Appl. Phys. Lett. 84(13), 2430 (2004)

    Article  CAS  Google Scholar 

  8. L.H. Li, Y. Chen, M.Y. Lin, A.M. Glushenkov, B.M. Cheng, J. Yu, Single deep ultraviolet light emission from boron nitride nanotube film. Appl. Phys. Lett. 97(14), 141104 (2010)

    Article  Google Scholar 

  9. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932 (2007)

    Article  CAS  Google Scholar 

  10. R. Czerw, S. Webster, D.L. Carroll, S.M.C. Vieira, P.R. Birkett, C.A. Rego, S. Roth, Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 83(8), 1617 (2003)

    Article  CAS  Google Scholar 

  11. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44(8–9), 1561 (2001)

    Article  CAS  Google Scholar 

  12. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979 (2010)

    Article  CAS  Google Scholar 

  13. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72(16), 1966 (1998)

    Article  CAS  Google Scholar 

  14. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, W.E. Buhro, CVD growth of boron nitride nanotubes. Chem. Mater. 12(7), 1808 (2000)

    Article  CAS  Google Scholar 

  15. R. Ma, Y. Bando, T. Sato, K. Kurashima, Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 13(9), 2965 (2001)

    Article  CAS  Google Scholar 

  16. J.K. Myung, S. Chatterjee, M.K. Seung, E.A. Stach, M.G. Bradley, M.J. Pender, L.G. Sneddon, B. Maruyama, Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. Nano Lett. 8(10), 3298 (2008)

    Article  Google Scholar 

  17. M.W. Smith, K.C. Jordan, C. Park, J.W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condensermethod. Nanotechnology 20(50), 505604 (2009)

    Article  Google Scholar 

  18. Y. Chen, J. Fitz Gerald, J.S. Williams, S. Bulcock, Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299(3–4), 260 (1999)

    Article  CAS  Google Scholar 

  19. Y. Chen, L.T. Chadderton, J.F. Gerald, J.S. Williams, A solid-state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74(20), 2960 (1999)

    Article  CAS  Google Scholar 

  20. Y. Chen, M. Conway, J.S. Williams, J. Zou, Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res. 17(8), 1896 (2002)

    Article  CAS  Google Scholar 

  21. J.D. Fitz Gerald, Y. Chen, M.J. Conway, Nanotube growth during annealing of mechanically milled Boron. Appl. Phys. A 76(1), 107 (2003)

    Article  CAS  Google Scholar 

  22. J. Yu, Y. Chen, R. Wuhrer, Z. Liu, S.P. Ringer, In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 17(20), 5172 (2005)

    Article  CAS  Google Scholar 

  23. W. Han, Y. Bando, K. Kurashima, T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73(21), 3085 (1998)

    Article  CAS  Google Scholar 

  24. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69(14), 2045 (1998)

    Article  Google Scholar 

  25. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, K. Tamiya, H. Yusa, Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chem. Phys. Lett. 279(3–4), 191 (1997)

    Article  CAS  Google Scholar 

  26. T. Laude, Y. Matsui, A. Marraud, B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 76(22), 3239 (2000)

    Article  CAS  Google Scholar 

  27. C. Tang, Y. Bando, T. Sato, K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2(12), 1290 (2002)

    Article  Google Scholar 

  28. A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 14(8), 4881 (2014)

    Article  CAS  Google Scholar 

  29. K.S. Kim, M. Couillard, H. Shin, M. Plunkett, D. Ruth, C.T. Kingston, B. Simard, Role of hydrogen in high-yield growth of boron nitride nanotubes at atmospheric pressure by induction thermal plasma. ACS Nano 12(1), 884 (2018)

    Article  CAS  Google Scholar 

  30. C.H. Lee, M. Xie, V. Kayastha, J. Wang, Y.K. Yap, Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22(5), 1782 (2010)

    Article  CAS  Google Scholar 

  31. B.E. Belkerk, A. Achour, D. Zhang, S. Sahli, M.A. Djouadi, Y.K. Yap, Thermal conductivity of vertically aligned boron nitride nanotubes. Appl. Phys. Express 9(7), 075002 (2016)

    Article  Google Scholar 

  32. J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 5(12), 2528 (2005)

    Article  CAS  Google Scholar 

  33. X.Z. Wang, Q. Wu, Z. Hu, Y. Chen, Template-directed synthesis of boron nitride nanotube arrays by microwave plasma chemical reaction. Electrochim. Acta 52(8), 2841 (2007)

    Article  CAS  Google Scholar 

  34. R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan, M. Wei, E.H.T. Teo, Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition. Chem. Mater. 27(20), 7156 (2015)

    Article  CAS  Google Scholar 

  35. L. Jing, R.Y. Tay, H. Li, S.H. Tsang, J. Huang, D. Tan, B. Zhang, E.H.T. Teo, A.I.Y. Tok, Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale 8(21), 11114 (2016)

    Article  CAS  Google Scholar 

  36. L. Jing, M.K. Samani, B. Liu, H. Li, R.Y. Tay, S.H. Tsang, O. Cometto, A. Nylander, J. Liu, E.H.T. Teo, A.I.Y. Tok, Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl. Mater. Interfaces 9(17), 14555 (2017)

    Article  CAS  Google Scholar 

  37. Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13), 2941 (2000)

    Article  CAS  Google Scholar 

  38. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006)

    Article  CAS  Google Scholar 

  39. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), R2514 (1999)

    Article  CAS  Google Scholar 

  40. S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000)

    Article  CAS  Google Scholar 

  41. F. Li, H.M. Cheng, S. Bai, G. Su, M.S. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77(20), 3161 (2000)

    Article  CAS  Google Scholar 

  42. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552 (2000)

    Article  CAS  Google Scholar 

  43. M. Ouyang, J.-L. Huang, C.M. Lieber, Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1018 (2002)

    Article  CAS  Google Scholar 

  44. P. Diao, Z. Liu, Vertically aligned single-walled carbon nanotubes by chemical assembly – methodology, properties, and applications. Adv. Mater. 22(13), 1430 (2010)

    Article  CAS  Google Scholar 

  45. Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385(3–4), 298 (2004)

    Article  CAS  Google Scholar 

  46. Y. Zheng, A. Kumamoto, K. Hisama, K. Otsuka, G. Wickerson, Y. Sato, M. Liu, T. Inoue, S. Chiashi, D.M. Tang, Q. Zhang, A. Anisimov, E.I. Kauppinen, Y. Li, K. Suenaga, Y. Ikuhara, S. Maruyama, R. Xiang, One-dimensional van der Waals heterostructures, growth mechanism and handedness correlation revealed by nondestructive TEM. Proc. Natl. Acad. Sci. USA (2021). https://doi.org/10.1073/pnas.2107295118

    Article  Google Scholar 

  47. R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E.I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama, One-dimensional van der Waals heterostructures. Science 367(6477), 537 (2020)

    Article  CAS  Google Scholar 

  48. T.H. Yuzuriha, D.W. Hess, Structural and optical properties of plasma-deposited boron nitride films. Thin Solid Films 140(2), 199 (1986)

    Article  CAS  Google Scholar 

  49. Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10(10), 4134 (2010)

    Article  CAS  Google Scholar 

  50. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3(10), 591 (2009)

    Article  CAS  Google Scholar 

  51. M. Liu, H. An, A. Kumamoto, T. Inoue, S. Chiashi, R. Xiang, S. Maruyama, Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon 146, 413 (2019)

    Article  CAS  Google Scholar 

  52. J.A. Talla, Stability and electronic properties of hybrid coaxial carbon nanotubes–boron nitride nanotubes under the influence of electric field. Appl. Phys. A 127(8), 628 (2021)

    Article  CAS  Google Scholar 

  53. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614 (2013)

    Article  CAS  Google Scholar 

  54. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride, Ab initio density functional calculations. Phys. Rev. B 76(7), 73103 (2007)

    Article  Google Scholar 

  55. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77(13), 1979 (2000)

    Article  CAS  Google Scholar 

  56. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47 (2005)

    Article  Google Scholar 

  57. P.T. Araujo, S.K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M.A. Pimenta, A. Jorio, Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 98(6), 67401 (2007)

    Article  Google Scholar 

  58. R. Geick, C.H. Perry, G. Rupprecht, Normal modes in hexagonal boron nitride. Phys. Rev. 146(2), 543 (1966)

    Article  CAS  Google Scholar 

  59. R. Arenal, X. Blase, A. Loiseau, Boron-nitride and boron-carbonitride nanotubes, synthesis, characterization and theory. Adv. Phys. 59(2), 101 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by JSPS KAKENHI Grant Nos. JP19H02543, JP20H00220, JP20KK0114, JP22K04874 and by JST, CREST Grant No. JPMJCR20B5, Japan. Part of the work was conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by the “Nanotechnology Platform” of the MEXT, Japan, Grant No. JPMXP09A20UT0063. M.L. acknowledges the support from JSPS Grant-in-Aid for Young Scientist Grant No. JP19J13441. S.W. acknowledges the support from Quantum Science and Technology Fellowship Program (Q-STEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Maruyama.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 382 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, S., Zheng, Y. et al. Synthesis of vertically aligned boron nitride nanotubes with a template of single-walled carbon nanotubes. Journal of Materials Research 37, 4428–4437 (2022). https://doi.org/10.1557/s43578-022-00759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00759-z

Keywords

Navigation