Skip to main content
Log in

Relationship between microstructure evolution and thermal conductivity of Mg–Sn–Ca alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relationship between microstructure evolution and thermal conductivity of the Mg–Sn–Ca alloys with various contents was investigated. The microstructures of Mg–2Sn–xCa alloys showed significant changes with different Ca contents. The addition of Ca can effectively improve the thermal conductivity of Mg–2Sn alloy. The thermal conductivity was remarkably improved to 147 W/(m·K) when the Sn/Ca atomic ratio was 1:1. The significant increase owes to the consumption of solute atoms and elimination of high-resistance Sn-rich regions. Mg–Sn–Ca alloys with Sn/Ca atomic ratio of 1 exhibited different solidification behaviors as the content increased. The thermal conductivity decreased linearly when the Sn content was below 3 wt% and then decreased rapidly at Sn content above 3 wt%. The former was dominated by the precipitated phase, while the latter was caused by Sn-enriched regions with high resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloy. 7(3), 536 (2019)

    Article  CAS  Google Scholar 

  2. C. Li, S. Yang, J. Du, H. Liao, G. Luo, Synergistic refining mechanism of Mg-3%Al alloy refining by carbon inoculation combining with Ca addition. J. Magnes. Alloy. 8(4), 1090 (2020)

    Article  CAS  Google Scholar 

  3. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Research and development in magnesium alloys for industrial and biomedical applications: a review. Metals Mater. Int. 26(4), 409 (2020)

    Article  CAS  Google Scholar 

  4. A. Vinogradov, Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60. J. Mater. Res. 32(23), 4362 (2017)

    Article  CAS  Google Scholar 

  5. A.A. Luo, R.K. Mishra, B.R. Powell, A.K. Sachdev, Magnesium alloy development for automotive applications. Mater. Sci. Forum. 706–709, 69 (2012)

    Article  Google Scholar 

  6. A. Huang, K.H. Lin, H.Y. Wei, Thermal performance enhancement with DRX in 5G millimeter wave communication system. IEEE Access. 9, 34692 (2021)

    Article  Google Scholar 

  7. S. Li, X. Yang, J. Hou, W. Du, A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloy. 8(1), 78 (2020)

    Article  CAS  Google Scholar 

  8. H. Pan, F. Pan, R. Yang, J. Peng, A. Tang, Q. Huang, K. Song, Z. Gao, Thermal and electrical conductivity of Mg–Zn–Al alloys. Mater. Sci. Tech-Lond. 30(8), 988 (2014)

    Article  CAS  Google Scholar 

  9. A. Rudajevová, P. Lukáč, Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater. Sci. Eng. A 397(1–2), 16 (2005)

    Article  Google Scholar 

  10. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, A. Tang, Thermal and electrical conductivity of binary magnesium alloys. J. Mater. Sci. 49(8), 3107 (2014)

    Article  CAS  Google Scholar 

  11. L. Zhong, J. Peng, S. Sun, Y. Wang, Y. Lu, F. Pan, Microstructure and thermal conductivity of as-cast and as-solutionized Mg–rare earth binary alloys. J. Mater. Sci. Technol. 33(11), 1240 (2017)

    Article  CAS  Google Scholar 

  12. X. Zhao, Z. Li, W. Zhou, D. Li, M. Qin, X. Zeng, Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys. J. Mater. Res. 36(15), 3145 (2021)

    Article  CAS  Google Scholar 

  13. C. Su, D. Li, A.A. Luo, T. Ying, X. Zeng, Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: a quantitative study. J. Alloys Compd. 747, 431 (2018)

    Article  CAS  Google Scholar 

  14. A. Rudajevová, M. Staněk, P. Luká, Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys. Mater. Sci. Eng. A 341(1–2), 152 (2003)

    Article  Google Scholar 

  15. H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, A. Tang, Correlation on the electrical and thermal conductivity for binary Mg–Al and Mg–Zn alloys. Int. J. Thermophys. 34(7), 1336 (2013)

    Article  CAS  Google Scholar 

  16. T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys. J. Alloys Compds. 608, 19 (2014)

    Article  CAS  Google Scholar 

  17. G. Yuan, G. You, S. Bai, W. Guo, Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes. J. Alloys Compd. 766, 410 (2018)

    Article  CAS  Google Scholar 

  18. Y.F. Liu, X.J. Jia, X.G. Qiao, S.W. Xu, M.Y. Zheng, Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–4Al magnesium alloys. J. Alloys Compd. 806, 71 (2019)

    Article  CAS  Google Scholar 

  19. W. Chunming, C. Yungui, X. Sufen, D. Wucheng, L. Xia, Thermal conductivity and mechanical properties of as-cast Mg-3Zn-(05∼35)Sn alloys. Rare Metal Mater. Eng. 42(10), 2019 (2013)

    Article  Google Scholar 

  20. H. Pan, F. Pan, X. Wang, J. Peng, J. She, C. Zhao, Q. Huang, K. Song, Z. Gao, High conductivity and high strength Mg–Zn–Cu alloy. Mater. Sci. Tech-Lond. 30(7), 759 (2013)

    Article  Google Scholar 

  21. J. Peng, L. Zhong, Y. Wang, J. Yang, Y. Lu, F. Pan, Effect of Ce addition on thermal conductivity of Mg–2Zn–1Mn alloy. J. Alloys Compd. 639, 556 (2015)

    Article  CAS  Google Scholar 

  22. Y. Huang, X. Zhou, J. Du, Microstructure, thermal conductivity and mechanical properties of the Mg–Zn–Sb ternary alloys. Metals Mater. Int. 27(11), 4477–4486 (2020)

    Article  Google Scholar 

  23. J. Peng, L. Zhong, Y. Wang, Y. Lu, F. Pan, Effect of extrusion temperature on the microstructure and thermal conductivity of Mg–20Zn–10Mn–02Ce alloys. Mater. Des. 87, 914 (2015)

    Article  CAS  Google Scholar 

  24. B. Li, L. Hou, R. Wu, J. Zhang, X. Li, M. Zhang, A. Dong, B. Sun, Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 722, 772 (2017)

    Article  CAS  Google Scholar 

  25. K.R. Athul, U.T.S. Pillai, A. Srinivasan, B.C. Pai, A review of different creep mechanisms in Mg alloys based on stress exponent and activation energy. Adv. Eng. Mater. 18(5), 770 (2016)

    Article  CAS  Google Scholar 

  26. Y. Feng, Y. Yang, Z. Xiao, X. Meng, G. Zhou, J. Leng, X. Teng, Effect of Al on the microstructure and mechanical properties of Mg–Sn–Ca–Mn wrought alloy. Metals Mater. Int. 28(6), 1480–1487 (2021)

    Article  Google Scholar 

  27. N. El-Mahallawy, H. Palkowski, H.-G. Breitinger, A. Klingner, M. Shoeib, A. Diaa, Microstructure, mechanical properties, cytotoxicity, and bio-corrosion of micro-alloyed Mg–xSn–0.04Mn alloys for biodegradable orthopedic applications: effect of processing techniques. J. Mater. Res. 36(7), 1456–1474 (2021)

    Article  CAS  Google Scholar 

  28. H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.-Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J.-F. Nie, Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater. 149, 350 (2018)

    Article  CAS  Google Scholar 

  29. T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, K. Hono, Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys. Acta Mater. 99, 176 (2015)

    Article  CAS  Google Scholar 

  30. C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, S. Xiao, Electrical and thermal conductivity in Mg–5Sn Alloy at different aging status. Mater. Des. 84, 48 (2015)

    Article  CAS  Google Scholar 

  31. Q. Huang, A. Tang, S. Ma, H. Pan, B. Song, Z. Gao, M. Rashad, F. Pan, Enhancing thermal conductivity of Mg-Sn alloy sheet by cold rolling and aging. J. Mater. Eng. Perform. 25(6), 2356 (2016)

    Article  CAS  Google Scholar 

  32. C. Wang, Z. Liu, S. Xiao, Y. Chen, Effects of Sn Ca additions on thermal conductivity of Mg matrix alloys. Mater. Sci. Tech-Lond. 1, 15 (2016)

    Google Scholar 

  33. Y.H. Kim, J.H. Kim, H.S. Yoo, H.T. Son, Analysis of microstructure and thermal conductivity in Mg–Sn–Ca alloy. J. Nanosci. Nanotechnol. 16(11), 11277–11280 (2016)

    Article  CAS  Google Scholar 

  34. A. Kozlov, M. Ohno, R. Arroyave, Z.K. Liu, R. Schmid-Fetzer, Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg–Sn–Ca system. Intermetallics 16(2), 299 (2008)

    Article  CAS  Google Scholar 

  35. A. Kozlov, M. Ohno, T.A. Leil, N. Hort, K.U. Kainer, R. Schmid-Fetzer, Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 2: Prediction of phase formation in Mg-rich Mg–Sn–Ca cast alloys. Intermetallics 16(2), 316 (2008)

    Article  CAS  Google Scholar 

  36. H. Okamoto, Phase diagram for binary alloys. Desk Hand Book 315, 15 (2000)

    Google Scholar 

  37. G. Nayyeri, R. Mahmudi, Effects of Ca additions on the microstructural stability and mechanical properties of Mg–5%Sn alloy. Mater. Des. 32(3), 1571 (2011)

    Article  CAS  Google Scholar 

  38. A.K. Ganguli, A.M. Guloy, J.D. Corbett, Concerning the Ca2−xMgxTt systems, Tt=Sn Pb. J. Solid State Chem. 152(2), 474 (2000)

    Article  CAS  Google Scholar 

  39. G. Luo, Y. Huang, C. Li, Z. Huang, J. Du, Microstructures and mechanical properties of Al-2Fe-xCo ternary alloys with high thermal conductivity. Materials 13(17), 15 (2020)

    Article  CAS  Google Scholar 

  40. S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of Ti additions on the electrical resistivity of copper. Mater. Sci. Eng. A 225(1), 118 (1997)

    Article  Google Scholar 

  41. C. Su, D. Li, T. Ying, L. Zhou, L. Li, X. Zeng, Effect of Nd content and heat treatment on the thermal conductivity of Mg Nd alloys. J. Alloys Compd. 685, 114 (2016)

    Article  CAS  Google Scholar 

  42. M. Schick, A. Watson, M. Baben, K. Hack, A modified Neumann-Kopp treatment of the heat capacity of stoichiometric phases for use in computational thermodynamics. J. Phase Equilib. Diffus. 40(1), 104 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du.

Ethics declarations

Conflict of interest

The authors declare that there are no known direct or potential conflict of interest which will affect the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Luo, G., Mo, L. et al. Relationship between microstructure evolution and thermal conductivity of Mg–Sn–Ca alloys. Journal of Materials Research 37, 3720–3730 (2022). https://doi.org/10.1557/s43578-022-00746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00746-4

Keywords

Navigation