Skip to main content

Advertisement

Log in

The rise of boron nitride nanotubes for applications in energy harvesting, nanoelectronics, quantum materials, and biomedicine

  • Invited Review
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrically insulating nature of boron nitride nanotubes (BNNTs) hindered their applications in energy production and electronic devices for more than a quarter-century. During the past ten years, researchers have creatively demonstrated applications based on the unique properties of BNNTs not found in carbon nanotubes (CNTs). For example, bending BNNTs to generate current flow, electric current generation induced by salinity gradients across the tubular channel of BNNTs, single-electron transistors (SETs) based on electron tunneling between gold nanoparticles on BNNTs, electronic switching across graphene-BNNT heterojunctions, and field-effect transistors based on Tellurium (Te) atomic chains filled inside BNNTs, etc. In addition, the optically transparent nature of BNNTs has enabled the formation and detection of monatomic gold quantum materials. The electrically insulating BNNTs have also minimized fluorescent quenching and allowed the construction of high-brightness fluorophores (HBFs) for biomedical phenotyping. We have reviewed some of these emerging applications and provided our perspective for future work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Copyright 2021 American Chemical Society.

Figure 2
Figure 3

Copyright 2013 John Wiley and Sons.

Figure 4

Copyright 2015 Springer Nature.

Figure 5

Copyright 2020 Springer Nature.

Figure 6

Copyright 2019 American Chemical Society.

Figure 7

Copyright 2021 American Chemical Society.

Similar content being viewed by others

Data availability

Not applicable as this is a review article.

Code availability

Not applicable as this is a review article.

References

  1. C.H. Lee, V.K. Kayastha, J. Wang, Y.K. Yap, Introduction to B-C–N Materials, in BCN nanotubes and related nanostructures (Springer, New York, 2009), p.1

    Google Scholar 

  2. Y.K. Yap, Boron-carbon nitride nanohybrids, in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, 2004), p.383

    Google Scholar 

  3. S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y.K. Yap, Chapter 1: Introduction to boron nitride nanotubes: synthesis, properties, functionalization, and cutting, in Boron Nitride Nanotubes in Nanomedicine (William Andrew Publishing, 2016), p.1

  4. B. Hao, C.H. Lee, J. Wang, A. Asthana, D. Winslow, D. Zhang and Y.K. Yap (2015) Chapter 20: Controlled synthesis of functional boron nitride nanostructures for applications in Nanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials, edited by Y. I. Chen (CRC Press, Boca Raton, 2015), pp. 551

  5. C.H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y.K. Yap, Boron nitride nanotubes recent advances in their synthesis, functionalization, and applications. Molecules 21(7), 922 (2016)

    Article  Google Scholar 

  6. J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 5(12), 2528 (2005)

    Article  CAS  Google Scholar 

  7. J. Wang, C.H. Lee, Y.K. Yap, Recent advancements in boron nitride nanotubes. Nanoscale 2(10), 2028 (2010)

    Article  CAS  Google Scholar 

  8. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19(18), 2413 (2007)

    Article  CAS  Google Scholar 

  9. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979 (2010)

    Article  CAS  Google Scholar 

  10. C.H. Lee, J. Wang, V.K. Kayatsha, J.Y. Huang, Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19(45), 455605 (2008)

    Article  Google Scholar 

  11. C.H. Lee, M. Xie, V. Kayastha, J. Wang, Y.K. Yap, Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22(5), 1782 (2010)

    Article  CAS  Google Scholar 

  12. G. Ciofani, V. Mattoli (eds.), Boron Nitride Nanotubes in Nanomedicine (Elsevier, 2016)

  13. G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri, Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 4(1), 8 (2009)

    Article  CAS  Google Scholar 

  14. H.M. Ghassemi, C.H. Lee, Y.K. Yap, R.S. Yassar, Field emission and strain engineering of electronic properties in boron nitride nanotubes. Nanotechnology 23(10), 105702 (2012)

    Article  Google Scholar 

  15. H. Ghassemi, C.H. Lee, Y.K. Yap, R.S. Yassar, On the relation of mechanical deformation and electrical properties of BN nanotubes. MRS Online Proceedings Library (OPL) (2009). https://doi.org/10.1557/PROC-1204-K17-03

    Article  Google Scholar 

  16. A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494(7438), 455 (2013)

    Article  CAS  Google Scholar 

  17. C.H. Lee, S. Qin, M.A. Savaikar, J. Wang, B. Hao, D. Zhang, D. Banyai, J.A. Jaszczak, K.W. Clark, J.C. Idrobo, A.-P. Li, Y.K. Yap, Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots. Adv. Mater. 25(33), 4544 (2013)

    Article  CAS  Google Scholar 

  18. Y.K. Yap, Room temperature tunneling switches and methods of making and using the same, US Patent 9825,154 (2017)

  19. B. Hao, A. Asthana, P.K. Hazaveh, P.L. Bergstrom, D. Banyai, M.A. Savaikar, J.A. Jaszczak, Y.K. Yap, New flexible channels for room temperature tunneling field effect transistors. Sci. Rep. 6(1), 1 (2016)

    Google Scholar 

  20. V. Parashar, C.P. Durand, B. Hao, R.G. Amorim, R. Pandey, B. Tiwari, D. Zhang, Y. Liu, A.-P. Li, Y.K. Yap, Switching behaviors of graphene-boron nitride nanotube heterojunctions. Sci. Rep. 5(1), 1 (2015)

    Article  Google Scholar 

  21. J.-K. Qin, P.-Y. Liao, M. Si, S. Gao, G. Qiu, J. Jian, Q. Wang, S.-Q. Zhang, S. Huang, A. Charnas, Y. Wang, M.-J. Kim, W. Wu, X. Xu, H.-Y. Wang, L. Yang, Y.K. Yap, P.D. Ye. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 3(3), 141 (2020)

    Article  CAS  Google Scholar 

  22. S. Bhandari, B. Hao, K. Waters, C.H. Lee, J.-C. Idrobo, D. Zhang, R. Pandey, Y.K. Yap, Two-dimensional gold quantum dots with tunable bandgaps. ACS Nano 13(4), 4347 (2019)

    Article  CAS  Google Scholar 

  23. Y.K. Yap, D. Zhang, N.B. Yapici, High-brightness fluorophores, US Patent App. 20180296705A1 (2018)

  24. B.E. Belkerk, A. Achour, D. Zhang, S. Sahli, M.-A. Djouadi, Y.K. Yap, Thermal conductivity of vertically aligned boron nitride nanotubes. Appl. Phys. Express 9(7), 075002 (2016)

    Article  Google Scholar 

  25. W. Han, Y. Bando, K. Kurashima, T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73(21), 3085 (1998)

    Article  CAS  Google Scholar 

  26. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966 (1995)

    Article  CAS  Google Scholar 

  27. C. Tang, Y. Bando, T. Sato, K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 12, 1290 (2002)

    Article  Google Scholar 

  28. C. Zhi, Y. Bando, C. Tan, D. Golberg, Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135(1), 67 (2005)

    Article  CAS  Google Scholar 

  29. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Boron nitride nanotubes with reduced numbers of layers synthesized by Arc discharge. Phys. Rev. Lett. 76(25), 4737 (1996)

    Article  CAS  Google Scholar 

  30. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, W.E. Buhro, CVD growth of boron nitride nanotubes. Chem. Mater. 12(7), 1808 (2000)

    Article  CAS  Google Scholar 

  31. M.J. Kim, S. Chatterjee, S.M. Kim, E.A. Stach, M.G. Bradley, M.J. Pender, L.G. Sneddon, B. Maruyama, Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. Nano Lett. 8(10), 3298 (2008)

    Article  CAS  Google Scholar 

  32. Y. Chen, L.T. Chadderton, J.F. Gerald, J.S. Williams, A solid-state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74(20), 2960 (1999)

    Article  CAS  Google Scholar 

  33. M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20(50), 505604 (2009)

    Article  Google Scholar 

  34. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72(16), 1966 (1998)

    Article  CAS  Google Scholar 

  35. T. Laude, Y. Matsui, A. Marraud, B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 76(22), 3239 (2000)

    Article  CAS  Google Scholar 

  36. R.S. Lee, J. Gavillet, M.L.D.L. Chapelle, A. Loiseau, J.L. Cochon, D. Pigache, J. Thibault, F. Willaime, Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration. Phys. Rev. B 64(12), 121405 (2001)

    Article  Google Scholar 

  37. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69(14), 2045 (1996)

    Article  CAS  Google Scholar 

  38. A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 14(8), 4881 (2014)

    Article  CAS  Google Scholar 

  39. K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J. Guan, M. Plunkett, B. Simard, Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8(6), 6211 (2014)

    Article  CAS  Google Scholar 

  40. V. Kayastha, Y.K. Yap, S. Dimovski, Y. Gogotsi, Controlling dissociative adsorption for effective growth of carbon nanotubes. Appl. Phys. Lett. 85(15), 3265 (2004)

    Article  CAS  Google Scholar 

  41. V.K. Kayastha, Y.K. Yap, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, High-density vertically aligned multiwalled carbon nanotubes with tubular structures. Appl. Phys. Lett. 86(25), 253105 (2005)

    Article  Google Scholar 

  42. S.L. Mensah, V.K. Kayastha, I.N. Ivanov, D.B. Geohegan, Y.K. Yap, Formation of single crystalline ZnO nanotubes without catalysts and templates. Appl. Phys. Lett. 90(11), 113108 (2007)

    Article  Google Scholar 

  43. S.L. Mensah, V.K. Kayastha, Y.K. Yap, Selective growth of pure and long ZnO nanowires by controlled vapor concentration gradients. J. Phys. Chem. C. 111(44), 16092 (2007)

    Article  CAS  Google Scholar 

  44. C.H. Lee, D. Zhang, Y.K. Yap, Functionalization, dispersion, and cutting of boron nitride nanotubes in water. J. Phys. Chem. C. 116(2), 1798 (2012)

    Article  CAS  Google Scholar 

  45. J. Guan, K.S. Kim, M.B. Jakubinek, B. Simard, pH-Switchable water-soluble boron nitride nanotubes. Chemistry Select. 3(32), 9308 (2018)

    CAS  Google Scholar 

  46. H. Cho, J.H. Kim, J.H. Hwang, C.S. Kim, S.G. Jang, C. Park, H. Lee, M.J. Kim, Single- and double-walled boron nitride nanotubes: Controlled synthesis and application for water purification. Sci. Rep. 10(1), 7416 (2020)

    Article  CAS  Google Scholar 

  47. T.N. Theis, P.M. Solomon, It’s time to reinvent the transistor! Science 327(5973), 1600 (2010)

    Article  CAS  Google Scholar 

  48. M. Lundstrom, Moore’s law forever? Science 299(5604), 210 (2003)

    Article  CAS  Google Scholar 

  49. J.J.L. Morton, D.R. McCamey, M.A. Eriksson, S.A. Lyon, Embracing the quantum limit in silicon computing. Nature 479(7373), 345 (2011)

    Article  CAS  Google Scholar 

  50. I. Ferain, C.A. Colinge, J.P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310 (2011)

    Article  CAS  Google Scholar 

  51. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329 (2011)

    Article  CAS  Google Scholar 

  52. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride Ab initio density functional calculations. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.073103

    Article  Google Scholar 

  53. X.L. Zhong, Y.K. Yap, R. Pandey, S.P. Karna, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.193403

    Article  Google Scholar 

  54. M.P. Levendorf, C.-J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488(7413), 627 (2012)

    Article  CAS  Google Scholar 

  55. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K.P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, P.M. Ajayan, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nano. 8(2), 119 (2013)

    Article  CAS  Google Scholar 

  56. L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng, L. Basile, J.C. Idrobo, A.-P. Li, G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163 (2014)

    Article  CAS  Google Scholar 

  57. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    Article  CAS  Google Scholar 

  58. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B. 108(52), 19912 (2004)

    Article  CAS  Google Scholar 

  59. F. Schwierz, Graphene transistors. Nat Nanotechnol. 5(7), 487 (2010)

    Article  CAS  Google Scholar 

  60. Y.K. Yap: B-C-N nanotubes and related nanostructures (Springer, New York, 2009).

  61. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)

    Article  CAS  Google Scholar 

  62. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396 (2011)

    Article  CAS  Google Scholar 

  63. B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated C60 in carbon nanotubes. Nature 396(6709), 323 (1998)

    Article  CAS  Google Scholar 

  64. L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J.C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, A. Rubio, Z.J. Lapin, L. Novotny, P. Ayala, T. Pichler, Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15(6), 634 (2016)

    Article  CAS  Google Scholar 

  65. T. Fujimori, A. Morelos-Gómez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Young Hong, Y. Chul Choi, D. Tománek, K. Kaneko, Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4(1), 2162 (2013)

    Article  Google Scholar 

  66. X. Pan, X. Bao, The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 44(8), 553 (2011)

    Article  CAS  Google Scholar 

  67. M. Ye, D. Winslow, D. Zhang, R. Pandey, Y.K. Yap, Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics. 2(1), 288 (2015)

    Article  CAS  Google Scholar 

  68. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264 (2013)

    Article  CAS  Google Scholar 

  69. G. Malta, S.A. Kondrat, S.J. Freakley, C.J. Davies, L. Lu, S. Dawson, A. Thetford, E.K. Gibson, D.J. Morgan, W. Jones, P.P. Wells, P. Johnston, C.R.A. Catlow, C.J. Kiely, G.J. Hutchings, Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355(6332), 1399 (2017)

    Article  CAS  Google Scholar 

  70. A.S.K. Hashmi, Gold-catalyzed organic reactions. Chem. Rev. 107(7), 3180 (2007)

    Article  CAS  Google Scholar 

  71. Z. Li, C. Brouwer, C. He, Gold-catalyzed organic transformations. Chem. Rev. 108(8), 3239 (2008)

    Article  CAS  Google Scholar 

  72. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11(9), 775 (2012)

    Article  CAS  Google Scholar 

  73. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739 (2012)

    Article  CAS  Google Scholar 

  74. Y. Wang, O. Zeiri, M. Raula, B. Le Ouay, F. Stellacci and I.A. Weinstock: Host–guest chemistry with water-soluble gold nanoparticle supraspheres Nat Nanotechnol. 12, 170 (2016).

  75. S.Y. Yao, X. Zhang, W. Zhou, R. Gao, W.Q. Xu, Y.F. Ye, L.L. Lin, X.D. Wen, P. Liu, B.B. Chen, E. Crumlin, J.H. Guo, Z.J. Zuo, W.Z. Li, J.L. Xie, L. Lu, C.J. Kiely, L. Gu, C. Shi, J.A. Rodriguez, D. Ma, Atomic-layered Au clusters on alpha-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357(6349), 389 (2017)

    Article  CAS  Google Scholar 

  76. Y. Zhai, J.S. DuChene, Y.-C. Wang, J. Qiu, A.C. Johnston-Peck, B. You, W. Guo, B. DiCiaccio, K. Qian, E.W. Zhao, F. Ooi, D. Hu, D. Su, E.A. Stach, Z. Zhu, W.D. Wei, Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 15, 889 (2016)

    Article  CAS  Google Scholar 

  77. H.-E. Lee, H.-Y. Ahn, J. Mun, Y.Y. Lee, M. Kim, N.H. Cho, K. Chang, W.S. Kim, J. Rho, K.T. Nam, Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556(7701), 360 (2018)

    Article  CAS  Google Scholar 

  78. H. Hakkinen, B. Yoon, U. Landman, X. Li, H.J. Zhai, L.S. Wang, On the electronic and atomic structures of small Au-N(-) (N=4–14) clusters: A photoelectron spectroscopy and density-functional study. J. Phys. Chem. A. 107(32), 6168 (2003)

    Article  Google Scholar 

  79. R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, Where does the planar-to-nonplanar turnover occur in small gold clusters? J Am Chem Soc. 127(3), 1049 (2005)

    Article  CAS  Google Scholar 

  80. M.P. Johansson, I. Warnke, A. Le, F. Furche, At what size do neutral gold clusters turn three-dimensional? J Phys Chem C. 118(50), 29370 (2014)

    Article  CAS  Google Scholar 

  81. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes, The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J Chem Phys. 117(15), 6982 (2002)

    Article  CAS  Google Scholar 

  82. J.A. Jaszczak, M.A. Savaikar, D.R. Banyai, B. Hao, D. Zhang, P.L. Bergstrom, A.-P. Li, J.-C. Idrobo, Y.K. Yap, Simulation of charge transport in disordered assemblies of metallic nano-islands: application to boron-nitride nanotubes functionalized with gold quantum dots. MRS Online Proc. Library Archive. 1700, 17 (2014)

    Article  Google Scholar 

  83. D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau, Synthesis of novel thin-film materials by pulsed laser deposition. Science 273(5277), 898 (1996)

    Article  CAS  Google Scholar 

  84. D. Zhang, S. Zhang, N. Yapici, R. Oakley, S. Sharma, V. Parashar, Y.K. Yap, Emerging applications of boron nitride nanotubes in energy harvesting Electronics, and Biomedicine. ACS Omega 6(32), 20722 (2021)

    Article  CAS  Google Scholar 

  85. C.W. Michael Brown, Flow cytometry: Principles and clinical applications in hematology. Clin. Chem. 46(8), 1221 (2000)

    Article  Google Scholar 

  86. C.F. Chiu, N. Dementev, E. Borguet, Fluorescence quenching of dyes covalently attached to single-walled carbon nanotubes. J Phys Chem A. 115(34), 9579 (2011)

    Article  CAS  Google Scholar 

  87. J.P. Casey, S.M. Bachilo, R.B. Weisman, Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin-SWCNT complexed. J Mater Chem. 18, 1510 (2008)

    Article  Google Scholar 

  88. R.B. Martin, L.W. Qu, Y. Lin, B.A. Harruff, C.E. Bunker, J.R. Gord, L.F. Allard, Y.-P. Sun, Functionalized carbon nanotubes with tethered pyrenes synthesis and photophysical properties. J Phys Chem B. 108, 11447 (2004)

    Article  CAS  Google Scholar 

  89. S.J. Lin, G. Keskar, Y.N. Wu, X. Wang, A.S. Mount, S.J. Klaine, J.M. Moore, A.M. Rao and P.C. Ke: Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Applied Phys. Lett. 89(14), (2006).

  90. F.M. Chen, W.J. Zhang, M.L. Jia, L. Wei, X.F. Fan, J.L. Kuo, Y. Chen, M.B. Chan-Park, A.D. Xia, L.J. Li, Energy transfer from photo-excited fluorene polymers to single-walled carbon nanotubes. J Phys Chem C. 113(33), 14946 (2009)

    Article  CAS  Google Scholar 

  91. S. Cetindag, B. Tiwari, D. Zhang, Y.K. Yap, S. Kim, J.W. Shan, Surface-charge effects on the electro-orientation of insulating boron-nitride nanotubes in aqueous suspension. J. Colloid Interface Sci. 505, 1185 (2017)

    Article  CAS  Google Scholar 

  92. R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan, M. Wei, E.H.T. Teo, Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition. Chem. Mater. 27(20), 7156 (2015)

    Article  CAS  Google Scholar 

  93. R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E.I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama, One-dimensional van der Waals heterostructures. Science 367(6477), 537 (2020)

    Article  CAS  Google Scholar 

  94. C. Allard, L. Schué, F. Fossard, G. Recher, R. Nascimento, E. Flahaut, A. Loiseau, P. Desjardins, R. Martel, E. Gaufrès, Confinement of dyes inside boron nitride nanotubes: photostable and shifted fluorescence down to the near infrared. Adv. Mater. 32(29), 2001429 (2020)

    Article  CAS  Google Scholar 

  95. Y.K. Yap: Recent Advancement in Boron Nitride Nanotubes and Nanosheets, in 2018 MRS Fall Meeting, Symposium NM01:Carbon Nanotubes, Graphenes and Related Nanostructures, paper NM01.12.06, Boston (2018)

  96. Y. K. Yap, N. Yapici, R. Oakley, X. Liu, S. Tokarz, D. Zhang: Ultra-High Brightness Fluorophores Based on Nanotubes, in 2020 Virtual MRS Fall Meeting, Symposium F.NM03: Nanotubes, Graphene and Related Nanostructures, paper F.NM03.04.01, (2020)

  97. N. Yapici, R. Oakley, X. Liu, D. Zhang, Y. K. Yap: Ultra-High Brightness Dyes with Tunable Brightness for Flow Cytometry, in 2020 Virtual MRS Fall Meeting, Symposium F.NM03: Nanotubes, Graphene and Related Nanostructures, paper F.NM03.04.02, (2020)

  98. Y.K. Yap: Nanotube-Based, High-Brightness Fluorophores for Flow Cytometry, in CYTO 2019, 34th Congress of the International Society for Advancement of Cytometry, Vancouver, Canada, Late-Breaking Posterpaper B386, June 22–26 (2019)

  99. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol. 11(1), 37 (2016)

    Article  CAS  Google Scholar 

  100. J. Ahn, Z. Xu, J. Bang, A.E.L. Allcca, Y.P. Chen, T. Li, Stable emission and fast optical modulation of quantum emitters in boron nitride nanotubes Opt. Lett. 43(15), 3778 (2018)

    CAS  Google Scholar 

  101. W. Hu, X. Cao, Y. Zhang, T. Li, J. Jiang, Y. Luo, Tunable single-photon emission by defective boron-nitride nanotubes for high-precision force detection. J. Phys. Chem. C. 123(14), 9624 (2019)

    Article  CAS  Google Scholar 

  102. X. Ma, N.F. Hartmann, J.K.S. Baldwin, S.K. Doorn, H. Htoon, Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol. 10(8), 671 (2015)

    Article  CAS  Google Scholar 

  103. M.M. Rahman, S. Mateti, Q. Cai, I. Sultana, Y. Fan, X. Wang, C. Hou, Y. Chen, High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials. 19, 352 (2019)

    Article  Google Scholar 

  104. H.S. Kim, H.J. Kang, H. Lim, H.J. Hwang, J.W. Park, T.G. Lee, S.Y. Cho, S.G. Jang, Y.S. Jun, Boron nitride nanotube-based separator for high-performance lithium-sulfur batteries. Nanomaterials 12(1), 11 (2022)

    Article  CAS  Google Scholar 

  105. D.M. Marincel, M. Adnan, J.C. Ma, E.A. Bengio, M.A. Trafford, O. Kleinerman, D.V. Kosynkin, S.H. Chu, C. Park, S.J.A. Hocker, C.C. Fay, S. Arepalli, A.A. Marti, Y. Talmon, M. Pasquali, Scalable purification of boron nitride nanotubes via wet thermal etching. Chem. Mater. 31(5), 1520 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge funding from the Elizabeth and Richard Henes Center for Quantum Phenomena. StabiLux Biosciences acknowledge the support from National Science Foundation, Directorate of Technology, Innovation and Partnership (TIP), Translational Impacts (TI) program (Awards numbers 1521057 and 1738466).

Author information

Authors and Affiliations

Authors

Contributions

All co-authors contributed to preparing a portion of the manuscript. DYZ and YKY rewrote all contributions and figures into a full manuscript.

Corresponding author

Correspondence to Yoke Khin Yap.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yapici, N., Oakley, R. et al. The rise of boron nitride nanotubes for applications in energy harvesting, nanoelectronics, quantum materials, and biomedicine. Journal of Materials Research 37, 4605–4619 (2022). https://doi.org/10.1557/s43578-022-00737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00737-5

Navigation