Skip to main content
Log in

Characterization of Al/(TiC + TiB2) hybrid composites containing different amounts of MWCNTs produced by SPS

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical and corrosion properties of Al + 20 vol% (TiC + TiB2) composites containing different amounts of MWCNTs produced by mechanical alloying and spark plasma sintering processes were investigated. X-ray diffraction analysis was used to identify the formation of the different phases. Field emission scanning electron microscopy equipped with EDS was utilized for microstructural studies. The Young's modulus and hardness of the composites were evaluated by nanoindentation test. The corrosion behavior of samples was investigated by polarization and impedance tests. X-ray diffraction analysis showed that TiC and TiB2 phases were formed during the mechanical alloying. The results of microstructural studies showed that the reinforcement particles were completely dispersed in the aluminum matrix. Also, it was found that the maximum hardness and the maximum Young's modulus belonged to the composite sample containing 1 wt% of MWCNTs. The highest corrosion resistance was also observed in the sample containing 1 wt% of MWCNTs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. H. Singh, G.S. Brar, H. Kumar, V. Aggarwal, A review on metal matrix composite for automobile applications. Mater. Today Proc. 43, 320–325 (2021)

    Article  CAS  Google Scholar 

  2. A. Kumar, S. Lal, S. Kumar, Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. J. Mater. Res. Technol. 2(3), 250–254 (2013)

    Article  CAS  Google Scholar 

  3. S. Madhankumar, S. Yokeshwaran, G. Elavarasan, M. Kannan, A. Balamurugan, Testing of mechanical properties of aluminum metal matrix composite using vermiculite. Mater. Today Proc. 5, 6974–6978 (2021)

    Article  Google Scholar 

  4. M. Meignanamoorthy, M. Ravichandran, S.V. Alagarsamy, C. Chanakyan, S. Dinesh Kumar, S. Sakthivelu, The effect of various reinforcements on properties of metal matrix composites: a review. Mater. Today Proc. 27(2), 1118–1121 (2020)

    Article  CAS  Google Scholar 

  5. V. Shetty, B.J. Patil, Evaluation of the mechanical properties and microstructure analysis of heat treated LM-12 alloy with SiO2 and CNT hybrid metal matrix composites. J. Mech. Eng. Res. Dev. 46(7), 2880–2883 (2021)

    CAS  Google Scholar 

  6. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. BenAzzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7d superconductor. J. Alloys Compd. 852, 1–10 (2021)

    Article  Google Scholar 

  7. A.K. Bodukuri, K. Eswaraiah, K. Rajendra, V. Sampath, Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy and evaluating mechanical properties. Perspect. Sci. 30, 428–431 (2016)

    Article  Google Scholar 

  8. K. Kumar, B.M. Dabade, L.N. Wankhade, Influence of B4C and SiC particles on aluminium metal matrix composites: a brief overview. Mater. Today Proc. 44, 2726–2734 (2021)

    Article  CAS  Google Scholar 

  9. S.S. Kumar, F. Erdemir, T. Varol, S.T. Kumaran, M. Uthayakumar, A. Canakci, Investigation of WEDM process parameters of Al–SiC–B4C composites using response surface methodology. Int. J. Light. Mater. Manuf. 3(2), 127–135 (2020)

    Google Scholar 

  10. F. Golmohammadi, M. Amiri, Fabrication of MEA from biomass-based carbon nanofibers composited with nickel-cobalt oxides as a new electrocatalyst for oxygen reduction reaction in passive direct methanol fuel cells. Electrocatalysis 11(5), 485–496 (2020)

    Article  CAS  Google Scholar 

  11. Z. Yu, Z. Tan, G. Fan, D.B. Xiong, Q. Guo, R. Lin, L. Hu, Z. Li, D. Zhang, Effect of interfacial reaction on Young’s modulus in CNT/Al nanocomposite: a quantitative analysis. Mater. Charact. 137, 84–90 (2018)

    Article  CAS  Google Scholar 

  12. M.A. Awotunde, A.O. Adegbenjo, M.B. Shongwe, P.A. Olubambi, Spark Plasma Sintering of Aluminium Based Materials (Springer, Cham, 2019), pp.3–28

    Google Scholar 

  13. F. Ogawa, C. Masuda, Fabrication and the mechanical and physical properties of nanocarbon-reinforced light metal matrix composites: a review and future directions. Mater. Sci. Eng. A 820, 1–19 (2021)

    Article  Google Scholar 

  14. H.Y. Yang, Z. Wang, L.Y. Chen, S.L. Shu, F. Qiu, L.C. Zhang, Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites B Eng. 209, 1–11 (2021)

    Article  Google Scholar 

  15. L. Lü, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, In situ TiB2 reinforced Al alloy composites. Scripta Mater. 45, 1017–1023 (2001)

    Article  Google Scholar 

  16. Z. Sadeghian, B. Lotfi, M.H. Enayati, P. Beiss, Microstructural and mechanical evaluation of Al–TiB2 nanostructured composite fabricated by mechanical alloying. J. Alloys Compd. 509, 7758–7763 (2011)

    Article  CAS  Google Scholar 

  17. X. Dong, H. Youssef, Y. Zhang, S. Wang, S. Ji, High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cutting-edge super vacuum assisted die casting process. Composites B Eng. 177, 107453–107464 (2019)

    Article  CAS  Google Scholar 

  18. B. Dikici, F. Bedir, M. Gavgali, The effect of high TiC particle content on the tensile cracking and corrosion behavior of Al–5Cu matrix composites. J. Compos. Mater. (2020). https://doi.org/10.1177/0021998319884098

    Article  Google Scholar 

  19. E.M. Sherif, H.S. Abdo, K.A. Khalil, A.M. Nabawy, Effect of titanium carbide content on the corrosion behavior of Al–TiC composites processed by high energy ball mill. Int. J. Electrochem. Sci. 11, 4632–4644 (2016)

    Article  CAS  Google Scholar 

  20. H. Munnur, S.N. Nagesh, C. Siddaraju, M.N. Rajesh, S. Rajanna, Characterization and tribological behavior of aluminum metal matrix composites—a review. Mater. Today Proc. 47, 2570–2574 (2021)

    Article  CAS  Google Scholar 

  21. O. Carvalho, G. Miranda, D. Soares, F.S. Silva, CNT-reinforced aluminum composites: processing and mechanical properties. Ciênc. Technol. Mater. 25, 75–78 (2013)

    CAS  Google Scholar 

  22. S. Khorasani, S. Heshmati-Manesh, H. Abdizadeh, Improvement of mechanical properties in aluminum/CNTs nanocomposites by addition of mechanically activated graphite. Composite Part A Appl. Sci. Manuf. 68, 177–183 (2015)

    Article  CAS  Google Scholar 

  23. C. Deng, X. Zhang, D. Wang, Q. Lin, A. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater. Lett. 61, 1725–1728 (2007)

    Article  CAS  Google Scholar 

  24. M. Rafiei, M. Salehi, M. Shamanian, Formation mechanism of B4C–TiB2–TiC ceramic composite produced by mechanical alloying of Ti–B4C powders. Adv. Powder Technol. 25, 1754–1760 (2014)

    Article  CAS  Google Scholar 

  25. D.R. Ni, L. Geng, J. Zhang, Z.Z. Zheng, Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system. Scripta Mater. 55, 429–432 (2006)

    Article  CAS  Google Scholar 

  26. Z.T. Wang, X.H. Zhou, G.G. Zhao, Microstructure and formation mechanism of in-situ TiC–TiB2/Fe composite coating. Trans. Nonferrous Met. Soc. China 18, 831–835 (2008)

    Article  CAS  Google Scholar 

  27. M. Hadian, H. Shahrajabian, M. Rafiei, Mechanical properties and microstructure of Al/(TiC+TiB2) composite fabricated by spark plasma sintering. Ceram. Int. 45, 12088–12092 (2019)

    Article  CAS  Google Scholar 

  28. R. Perez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, R. Martínez-Sánchez, Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450, 323–326 (2008)

    Article  CAS  Google Scholar 

  29. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys. Compd. 615, 578–582 (2014)

    Article  Google Scholar 

  30. A. Saboori, M. Pavese, C. Badini, P. Fino, Microstructure and thermal conductivity of Al–graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. (Engl. Lett.) 30, 675–687 (2017)

    Article  CAS  Google Scholar 

  31. G. Polat, I.E. Canbolat, A. Uzunoğlu, H. Kotan, Effect of milling time, MWCNT content, and annealing temperature on microstructure and hardness of Fe/MWCNT nanocomposites synthesized by high-energy ball milling. Adv. Powder Technol. 32, 3107–3116 (2021)

    Article  CAS  Google Scholar 

  32. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci. Mater. Int. 25, 460–470 (2015)

    Article  CAS  Google Scholar 

  33. S.M. Mirbagheri, H. Shahrajabian, M. Rafiei, Effects of graphene nanoplatelets (GNPs) on the microstructure, mechanical properties and corrosion behavior of spark plasma sintered Al + 20 vol.% (TiC +TiB2) hybrid composites. J. Mater. Eng. Perform. 31, 3535–3549 (2022)

    Article  CAS  Google Scholar 

  34. V. Subbaiah, B. Palampalle, K. Brahmaraju, Microstructural analysis and mechanical properties of pure Al–GNPs composites by stir casting method. J. Inst. Eng. India Ser. C 100, 493–500 (2019)

    Article  Google Scholar 

  35. R. Ranga Raj, J. Yoganandh, M.S. Senthil Saravanan, S. Sathiesh Kumar, Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett. 31, 125–136 (2021)

    Article  Google Scholar 

  36. M. Rashad, F. Pan, A. Tang, M. Asif, Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 24, 101–108 (2014)

    Article  CAS  Google Scholar 

  37. A.A. Javidparvar, R. Naderi, B. Ramezanzadeh, L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement. J. Hazard. Mater. 389, 122–135 (2020)

    Article  Google Scholar 

  38. M. Shamir, M. Junaid, F.N. Khan, A.A. Taimoor, M.N. Baig, A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti–5Al–2.5Sn alloy. J. Mater. Res. Technol. 8(1), 87–98 (2019)

    Article  CAS  Google Scholar 

  39. Z. Gao, D. Zhang, S. Jiang, Q. Zhang, XPS investigations on the corrosion mechanism of V (IV) conversion coatings on hot-dip galvanized steel. Corros. Sci. 139, 163–171 (2018)

    Article  CAS  Google Scholar 

  40. X.J. Zhang, F. Gao, Z.Y. Liu, Effect of Sn on corrosion behavior of ultra-pure 17 mass% Cr ferritic stainless steels in sulphuric acid. J. Iron. Steel Res. Int. 23, 1044–1053 (2016)

    Article  Google Scholar 

  41. M. Furko, Y. Jiang, T.A. Wilkins, C. Balázsi, Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Mater. Sci. Eng. 62, 249–259 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rafiei.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirbagheri, S.M., Baharzadeh, E. & Rafiei, M. Characterization of Al/(TiC + TiB2) hybrid composites containing different amounts of MWCNTs produced by SPS. Journal of Materials Research 37, 3575–3586 (2022). https://doi.org/10.1557/s43578-022-00726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00726-8

Keywords

Navigation