Abstract
Boron nitride (BN) nanomaterials are being proposed as reinforcement materials in the next-generation structural composite materials for aerospace applications. Considering that the polymer/reinforcement interface characteristics can significantly affect the bulk-level properties, we focus on the representative cases of cyanate esters, epoxy, and bismaleimide (BMI) resins forming interfaces with a bilayer BN. While the fluorinated cyanate ester interface demonstrates lower interaction energy than non-fluorinated cyanate ester due to steric hindrance provided by fluorine groups, BMI shows higher interaction energy than epoxy because of the planarity of BMI. Calculations simulating pull-apart transverse tension experiments using molecular dynamics find that the non-fluorinated ester interface exhibits higher peak strength and stiffness than the fluorinated interface. On the other hand, the epoxy/BN interface is predicted to have significantly lower toughness than the BMI/BN interface. The results based on interaction energy and pull-apart transverse tension show that the BMI with BN can be considered superior to epoxy and ester polymers with BN.
Graphical abstract

This is a preview of subscription content, access via your institution.







Data availability
The corresponding author can provide the data from the paper upon reasonable request.
References
S. Bellucci, C. Balasubramanian, F. Micciulla, G. Rinaldi, CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)
E.J. Siochi, J.S. Harrison, Structural nanocomposites for aerospace applications. MRS Bull. 40(10), 829–835 (2015)
P.J. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31–43 (2004)
P.K. Gangineni, S. Yandrapu, S.K. Ghosh, A. Anand, R.K. Prusty, B.C. Ray, Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups. Compos. A Appl. Sci. Manuf. 122, 36–44 (2019)
B. Balakrishna, A. Menon, K. Cao, S. Gsänger, S.B. Beil, J. Villalva, O. Shyshov, O. Martin, A. Hirsch, B. Meyer, Dynamic covalent formation of concave disulfide macrocycles mechanically interlocked with single-walled carbon nanotubes. Angew. Chem. Int. Ed. 59(42), 18774–18785 (2020)
A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. 113(9), 1771–1775 (2001)
D. Baskaran, J.W. Mays, M.S. Bratcher, Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17(13), 3389–3397 (2005)
S. De, A.O. Fulmali, P. Shivangi, S. Choudhury, R.K. Prusty, B.C. Ray, Interface modification of carbon fiber reinforced epoxy composite by hydroxyl/carboxyl functionalized carbon nanotube. Mater. Today 27, 1473–1478 (2020)
M.U. Farooq, R. Jan, M. Azeem, M.A. Umer, M.A. Akram, A.N. Khan, I. Ahmad, S.A. Khan, Z.A. Umar, U. Liaqat, Enhanced mechanical properties of functionalized BN nanosheets-polymer composites. J. Polym. Res. 27(10), 1–9 (2020)
J. Chen, K. Wang, Y. Zhao, Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos. Sci. Technol. 154, 175–186 (2018)
J. Li, Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites. Appl. Surf. Sci. 255(5), 2822–2824 (2008)
H. Zhang, W. Li, Plasma-grafting polymerization on carbon fibers and its effect on their composite properties. Appl. Surf. Sci. 356, 492–498 (2015)
F. Liu, Z. Shi, Y. Dong, Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent. Compos. A Appl. Sci. Manuf. 112, 337–345 (2018)
Y. Wang, G. Colas, T. Filleter, Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking. Carbon 98, 291–299 (2016)
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)
X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL (Europhys. Lett.) 28(5), 335 (1994)
N.G. Chopra, R. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966–967 (1995)
Y. Xiao, X. Yan, J. Cao, J. Ding, Y. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69(20), 205415 (2004)
L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011)
L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457–1462 (2014)
A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, M. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)
M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 5(1), 1–18 (2021)
M.M.H. Bhuiyan, J. Wang, L.H. Li, P. Hodgson, A. Agarwal, M. Qian, Y. Chen, Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. J. Mater. Res. 32(19), 3744–3752 (2017)
F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)
M.B. Jakubinek, B. Ashrafi, Y. Martinez-Rubi, J. Guan, M. Rahmat, K.S. Kim, S. Dénommée, C.T. Kingston, B. Simard, Boron nitride nanotube composites and applications. In: Nanotube Superfiber Materials (Elsevier, Amsterdam, 2019), pp. 91–111
X. Chen, C. Ke, Structural and physical properties of boron nitride nanotubes and their applications in nanocomposites. In: Boron Nitride Nanotubes in Nanomedicine (Elsevier, Amsterdam, 2016), pp. 183–199
L. Horvath, A. Magrez, D. Golberg, C. Zhi, Y. Bando, R. Smajda, E. Horvath, L. Forro, B. Schwaller, In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5(5), 3800–3810 (2011)
G. Ciofani, V. Raffa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi, A. Cuschieri, Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci. 5(1), 33–38 (2009)
W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. Liu, L. Liu, Y. Ma, Y. Chen, Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6, 219–224 (2014)
Y.-X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. Journal of Materials Chemistry A 2(23), 8910–8917 (2014)
S.K. Jang, J. Youn, Y.J. Song, S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 6(1), 1–9 (2016)
K.B. Dhungana, R. Pati, Boron nitride nanotubes for spintronics. Sensors 14(9), 17655–17685 (2014)
D. Wang, K. Zhou, W. Yang, W. Xing, Y. Hu, X. Gong, Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 52(50), 17882–17890 (2013)
S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)
J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, Mechanical properties of graphene nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 128(6), 4217–4223 (2013)
X. Chen, L. Zhang, C. Park, C.C. Fay, X. Wang, C. Ke, Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107(25), 253105 (2015)
S. Rouhi, Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers Polym 17(3), 333–342 (2016)
G. Odegard, T. Clancy, T. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2), 553–562 (2005)
G. Odegard, S. Frankland, T. Gates, Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites. AIAA J. 43(8), 1828–1835 (2005)
J. Li, J. Chen, M. Zhu, H. Song, H. Zhang, Interfacial characteristics of boron nitride nanosheet/epoxy resin nanocomposites: a molecular dynamics simulation. Appl. Sci. 9(14), 2832 (2019)
A.T. Nasrabadi, M. Foroutan, Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J. Phys. Chem. B 114(47), 15429–15436 (2010)
M.G. Rasul, A. Kiziltas, C.D. Malliakas, R. Rojaee, S. Sharifi-Asl, T. Foroozan, R. Shahbazian-Yassar, B. Arfaei, Polyethylene-BN nanosheets nanocomposites with enhanced thermal and mechanical properties. Compos. Sci. Technol. 204, 108631 (2021)
W. Meng, Y. Huang, Y. Fu, Z. Wang, C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets. J. Mater. Chem. C 2(47), 10049–10061 (2014)
W.A. Pisani, M.S. Radue, S.U. Patil, G.M. Odegard, Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers. Compos. B Eng. 211, 108672 (2021)
T.J. Wooster, S. Abrol, J.M. Hey, D.R. MacFarlane, Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos. A Appl. Sci. Manuf. 35(1), 75–82 (2004)
S. Goyal, E.W. Cochran, Cyanate ester composites to improve thermal performance: a review. Polym. Int. 71(5), 583–589 (2022)
P.P. Deshpande, M.S. Radue, P. Gaikwad, S. Bamane, S.U. Patil, W.A. Pisani, G.M. Odegard, Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics. Langmuir 37(39), 11526–11534 (2021)
A. Toldy, B. Szolnoki, G. Marosi, Flame retardancy of fiber-reinforced epoxy resin composites for aerospace applications. Polym. Degrad. Stab. 96(3), 371–376 (2011)
C. May, Epoxy Resins: Chemistry and Technology (Routledge, London, 2018)
R.J. Iredale, C. Ward, I. Hamerton, Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides. Prog. Polym. Sci. 69, 1–21 (2017)
Y. Ning, D.S. Li, M.C. Wang, L. Jiang, Eugenol-derived bismaleimide high-performance resins and composites using diisocyanate as property modifier. Macromol. Mater. Eng. 304(4), 1800713 (2019)
Q. Zhao, X. Li, Z. Tian, H. Ma, X. Hou, Y. Wang, Y. Wang, Controlling degradation and recycling of carbon fiber reinforced bismaleimide resin composites via selective cleavage of imide bonds. Compos. B Eng. 231, 109595 (2022)
S.U. Patil, M.S. Radue, W.A. Pisani, P. Deshpande, H. Xu, H. Al Mahmud, T. Dumitrică, G.M. Odegard, Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study. Comput. Mater. Sci. 185, 109970 (2020)
SS Bamane, K Krishna, H Heinz, G Odegard, Force field parameterization and molecular dynamics simulation of epoxy resin interaction with boron nitride nanotube surfaces. ChemRxiv (2022). https://doi.org/10.26434/chemrxiv-2022-c3t1b
M.H. Kirmani, G. Sachdeva, R. Pandey, G.M. Odegard, R. Liang, S. Kumar, Cure behavior changes and compression of carbon nanotubes in aerospace grade bismaleimide-carbon nanotube sheet nanocomposites. ACS Appl. Nano Mater. 4(3), 2476–2485 (2021)
G. Sachdeva, A.L. Lobato, R. Pandey, G.M. Odegard, Mechanical response of polymer epoxy/BMI composites with graphene and a boron nitride monolayer from first principles. ACS Appl. Polym. Mater. 3(2), 1052–1059 (2021)
H. Heinz, T.-J. Lin, R. Kishore Mishra, F.S. Emami, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29(6), 1754–1765 (2013)
S.S. Bamane, P.S. Gaikwad, M.S. Radue, S. Gowtham, G.M. Odegard, Wetting simulations of high-performance polymer resins on carbon surfaces as a function of temperature using molecular dynamics. Polymers 13(13), 2162 (2021)
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)
M.S. Genidy, M.S. Madhukar, J.D. Russell, A new method to reduce cure-induced stresses in thermoset polymer composites, Part II: closed loop feedback control system. J. Compos. Mater. 34(22), 1905–1925 (2000)
W.K. Goertzen, M. Kessler, Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability. Compos. A Appl. Sci. Manuf. 38(3), 779–784 (2007)
J.R. Gissinger, B.D. Jensen, K.E. Wise, Modeling chemical reactions in classical molecular dynamics simulations. Polymer 128, 211–217 (2017)
A. Bandyopadhyay, P.K. Valavala, T.C. Clancy, K.E. Wise, G.M. Odegard, Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11), 2445–2452 (2011)
M.S. Radue, B.D. Jensen, S. Gowtham, D.R. Klimek-McDonald, J.A. King, G.M. Odegard, Comparing the mechanical response of di-, tri-, and tetra-functional resin epoxies with reactive molecular dynamics. J. Polym. Sci., Part B Polym. Phys. 56(3), 255–264 (2018)
R.J. Morgan, E.E. Shin, B. Rosenberg, A. Jurek, Characterization of the cure reactions of bismaleimide composite matrices. Polymer 38(3), 639–646 (1997)
B. Rozenberg, G. Bojko, R. Morgan, E. Shin, Cure mechanism of the 4, 4’-(n, n’-bismaleimide) diphenylmethane-2, 2’-diallylbisphenol a system. Bыcoкoмoлeкyляpныe coeдинeния. Cepия A 43(4), 630–645 (2001)
M.S. Radue, V. Varshney, J.W. Baur, A.K. Roy, G.M. Odegard, Molecular modeling of cross-linked polymers with complex cure pathways: a case study of bismaleimide resins. Macromolecules 51(5), 1830–1840 (2018)
Acknowledgments
This research was funded by NASA's Space Technology Research Institute (STRI) under Grant NNX17AJ32G for Ultra-Strong Composites by Computational Design (US-COMP). MD simulation results were obtained using a high-performance computing cluster-SUPERIOR at Michigan Technological University in this publication.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The corresponding author declares that there is no conflict of interest on behalf of all authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sachdeva, G., Patil, S.U., Bamane, S.S. et al. Mechanical response of polymer/BN composites investigated by molecular dynamics method. Journal of Materials Research 37, 4533–4543 (2022). https://doi.org/10.1557/s43578-022-00725-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00725-9
Keywords
- Cyanate ester
- Boron nitride
- Pull-apart
- Molecular dynamics
- Epoxy
- BMI