Skip to main content

Mechanical response of polymer/BN composites investigated by molecular dynamics method

Abstract

Boron nitride (BN) nanomaterials are being proposed as reinforcement materials in the next-generation structural composite materials for aerospace applications. Considering that the polymer/reinforcement interface characteristics can significantly affect the bulk-level properties, we focus on the representative cases of cyanate esters, epoxy, and bismaleimide (BMI) resins forming interfaces with a bilayer BN. While the fluorinated cyanate ester interface demonstrates lower interaction energy than non-fluorinated cyanate ester due to steric hindrance provided by fluorine groups, BMI shows higher interaction energy than epoxy because of the planarity of BMI. Calculations simulating pull-apart transverse tension experiments using molecular dynamics find that the non-fluorinated ester interface exhibits higher peak strength and stiffness than the fluorinated interface. On the other hand, the epoxy/BN interface is predicted to have significantly lower toughness than the BMI/BN interface. The results based on interaction energy and pull-apart transverse tension show that the BMI with BN can be considered superior to epoxy and ester polymers with BN.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

The corresponding author can provide the data from the paper upon reasonable request.

References

  1. S. Bellucci, C. Balasubramanian, F. Micciulla, G. Rinaldi, CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)

    Article  CAS  Google Scholar 

  2. E.J. Siochi, J.S. Harrison, Structural nanocomposites for aerospace applications. MRS Bull. 40(10), 829–835 (2015)

    Article  Google Scholar 

  3. P.J. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31–43 (2004)

    Article  CAS  Google Scholar 

  4. P.K. Gangineni, S. Yandrapu, S.K. Ghosh, A. Anand, R.K. Prusty, B.C. Ray, Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups. Compos. A Appl. Sci. Manuf. 122, 36–44 (2019)

    Article  CAS  Google Scholar 

  5. B. Balakrishna, A. Menon, K. Cao, S. Gsänger, S.B. Beil, J. Villalva, O. Shyshov, O. Martin, A. Hirsch, B. Meyer, Dynamic covalent formation of concave disulfide macrocycles mechanically interlocked with single-walled carbon nanotubes. Angew. Chem. Int. Ed. 59(42), 18774–18785 (2020)

    Article  CAS  Google Scholar 

  6. A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. 113(9), 1771–1775 (2001)

    Article  Google Scholar 

  7. D. Baskaran, J.W. Mays, M.S. Bratcher, Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17(13), 3389–3397 (2005)

    Article  CAS  Google Scholar 

  8. S. De, A.O. Fulmali, P. Shivangi, S. Choudhury, R.K. Prusty, B.C. Ray, Interface modification of carbon fiber reinforced epoxy composite by hydroxyl/carboxyl functionalized carbon nanotube. Mater. Today 27, 1473–1478 (2020)

    CAS  Google Scholar 

  9. M.U. Farooq, R. Jan, M. Azeem, M.A. Umer, M.A. Akram, A.N. Khan, I. Ahmad, S.A. Khan, Z.A. Umar, U. Liaqat, Enhanced mechanical properties of functionalized BN nanosheets-polymer composites. J. Polym. Res. 27(10), 1–9 (2020)

    Article  Google Scholar 

  10. J. Chen, K. Wang, Y. Zhao, Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos. Sci. Technol. 154, 175–186 (2018)

    Article  CAS  Google Scholar 

  11. J. Li, Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites. Appl. Surf. Sci. 255(5), 2822–2824 (2008)

    Article  CAS  Google Scholar 

  12. H. Zhang, W. Li, Plasma-grafting polymerization on carbon fibers and its effect on their composite properties. Appl. Surf. Sci. 356, 492–498 (2015)

    Article  CAS  Google Scholar 

  13. F. Liu, Z. Shi, Y. Dong, Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent. Compos. A Appl. Sci. Manuf. 112, 337–345 (2018)

    Article  CAS  Google Scholar 

  14. Y. Wang, G. Colas, T. Filleter, Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking. Carbon 98, 291–299 (2016)

    Article  CAS  Google Scholar 

  15. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  16. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL (Europhys. Lett.) 28(5), 335 (1994)

    Article  CAS  Google Scholar 

  17. N.G. Chopra, R. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966–967 (1995)

    Article  CAS  Google Scholar 

  18. Y. Xiao, X. Yan, J. Cao, J. Ding, Y. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69(20), 205415 (2004)

    Article  Google Scholar 

  19. L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011)

    Article  CAS  Google Scholar 

  20. L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457–1462 (2014)

    Article  CAS  Google Scholar 

  21. A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, M. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)

    Article  CAS  Google Scholar 

  22. M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 5(1), 1–18 (2021)

    Article  Google Scholar 

  23. M.M.H. Bhuiyan, J. Wang, L.H. Li, P. Hodgson, A. Agarwal, M. Qian, Y. Chen, Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. J. Mater. Res. 32(19), 3744–3752 (2017)

    Article  CAS  Google Scholar 

  24. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)

    Article  CAS  Google Scholar 

  25. M.B. Jakubinek, B. Ashrafi, Y. Martinez-Rubi, J. Guan, M. Rahmat, K.S. Kim, S. Dénommée, C.T. Kingston, B. Simard, Boron nitride nanotube composites and applications. In: Nanotube Superfiber Materials (Elsevier, Amsterdam, 2019), pp. 91–111

  26. X. Chen, C. Ke, Structural and physical properties of boron nitride nanotubes and their applications in nanocomposites. In: Boron Nitride Nanotubes in Nanomedicine (Elsevier, Amsterdam, 2016), pp. 183–199

  27. L. Horvath, A. Magrez, D. Golberg, C. Zhi, Y. Bando, R. Smajda, E. Horvath, L. Forro, B. Schwaller, In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5(5), 3800–3810 (2011)

    Article  CAS  Google Scholar 

  28. G. Ciofani, V. Raffa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi, A. Cuschieri, Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci. 5(1), 33–38 (2009)

    Article  CAS  Google Scholar 

  29. W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. Liu, L. Liu, Y. Ma, Y. Chen, Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6, 219–224 (2014)

    Article  CAS  Google Scholar 

  30. Y.-X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. Journal of Materials Chemistry A 2(23), 8910–8917 (2014)

    Article  CAS  Google Scholar 

  31. S.K. Jang, J. Youn, Y.J. Song, S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 6(1), 1–9 (2016)

    Article  CAS  Google Scholar 

  32. K.B. Dhungana, R. Pati, Boron nitride nanotubes for spintronics. Sensors 14(9), 17655–17685 (2014)

    Article  Google Scholar 

  33. D. Wang, K. Zhou, W. Yang, W. Xing, Y. Hu, X. Gong, Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 52(50), 17882–17890 (2013)

    Article  CAS  Google Scholar 

  34. S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)

    Article  CAS  Google Scholar 

  35. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  36. J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, Mechanical properties of graphene nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 128(6), 4217–4223 (2013)

    Article  CAS  Google Scholar 

  37. X. Chen, L. Zhang, C. Park, C.C. Fay, X. Wang, C. Ke, Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107(25), 253105 (2015)

    Article  Google Scholar 

  38. S. Rouhi, Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers Polym 17(3), 333–342 (2016)

    Article  CAS  Google Scholar 

  39. G. Odegard, T. Clancy, T. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2), 553–562 (2005)

    Article  CAS  Google Scholar 

  40. G. Odegard, S. Frankland, T. Gates, Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites. AIAA J. 43(8), 1828–1835 (2005)

    Article  CAS  Google Scholar 

  41. J. Li, J. Chen, M. Zhu, H. Song, H. Zhang, Interfacial characteristics of boron nitride nanosheet/epoxy resin nanocomposites: a molecular dynamics simulation. Appl. Sci. 9(14), 2832 (2019)

    Article  CAS  Google Scholar 

  42. A.T. Nasrabadi, M. Foroutan, Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J. Phys. Chem. B 114(47), 15429–15436 (2010)

    Article  CAS  Google Scholar 

  43. M.G. Rasul, A. Kiziltas, C.D. Malliakas, R. Rojaee, S. Sharifi-Asl, T. Foroozan, R. Shahbazian-Yassar, B. Arfaei, Polyethylene-BN nanosheets nanocomposites with enhanced thermal and mechanical properties. Compos. Sci. Technol. 204, 108631 (2021)

    Article  CAS  Google Scholar 

  44. W. Meng, Y. Huang, Y. Fu, Z. Wang, C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets. J. Mater. Chem. C 2(47), 10049–10061 (2014)

    Article  CAS  Google Scholar 

  45. W.A. Pisani, M.S. Radue, S.U. Patil, G.M. Odegard, Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers. Compos. B Eng. 211, 108672 (2021)

    Article  CAS  Google Scholar 

  46. T.J. Wooster, S. Abrol, J.M. Hey, D.R. MacFarlane, Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos. A Appl. Sci. Manuf. 35(1), 75–82 (2004)

    Article  Google Scholar 

  47. S. Goyal, E.W. Cochran, Cyanate ester composites to improve thermal performance: a review. Polym. Int. 71(5), 583–589 (2022)

    Article  CAS  Google Scholar 

  48. P.P. Deshpande, M.S. Radue, P. Gaikwad, S. Bamane, S.U. Patil, W.A. Pisani, G.M. Odegard, Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics. Langmuir 37(39), 11526–11534 (2021)

    Article  CAS  Google Scholar 

  49. A. Toldy, B. Szolnoki, G. Marosi, Flame retardancy of fiber-reinforced epoxy resin composites for aerospace applications. Polym. Degrad. Stab. 96(3), 371–376 (2011)

    Article  CAS  Google Scholar 

  50. C. May, Epoxy Resins: Chemistry and Technology (Routledge, London, 2018)

    Book  Google Scholar 

  51. R.J. Iredale, C. Ward, I. Hamerton, Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides. Prog. Polym. Sci. 69, 1–21 (2017)

    Article  CAS  Google Scholar 

  52. Y. Ning, D.S. Li, M.C. Wang, L. Jiang, Eugenol-derived bismaleimide high-performance resins and composites using diisocyanate as property modifier. Macromol. Mater. Eng. 304(4), 1800713 (2019)

    Article  Google Scholar 

  53. Q. Zhao, X. Li, Z. Tian, H. Ma, X. Hou, Y. Wang, Y. Wang, Controlling degradation and recycling of carbon fiber reinforced bismaleimide resin composites via selective cleavage of imide bonds. Compos. B Eng. 231, 109595 (2022)

    Article  CAS  Google Scholar 

  54. S.U. Patil, M.S. Radue, W.A. Pisani, P. Deshpande, H. Xu, H. Al Mahmud, T. Dumitrică, G.M. Odegard, Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study. Comput. Mater. Sci. 185, 109970 (2020)

    Article  CAS  Google Scholar 

  55. SS Bamane, K Krishna, H Heinz, G Odegard, Force field parameterization and molecular dynamics simulation of epoxy resin interaction with boron nitride nanotube surfaces. ChemRxiv (2022). https://doi.org/10.26434/chemrxiv-2022-c3t1b

  56. M.H. Kirmani, G. Sachdeva, R. Pandey, G.M. Odegard, R. Liang, S. Kumar, Cure behavior changes and compression of carbon nanotubes in aerospace grade bismaleimide-carbon nanotube sheet nanocomposites. ACS Appl. Nano Mater. 4(3), 2476–2485 (2021)

    Article  CAS  Google Scholar 

  57. G. Sachdeva, A.L. Lobato, R. Pandey, G.M. Odegard, Mechanical response of polymer epoxy/BMI composites with graphene and a boron nitride monolayer from first principles. ACS Appl. Polym. Mater. 3(2), 1052–1059 (2021)

    Article  CAS  Google Scholar 

  58. H. Heinz, T.-J. Lin, R. Kishore Mishra, F.S. Emami, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29(6), 1754–1765 (2013)

    Article  CAS  Google Scholar 

  59. S.S. Bamane, P.S. Gaikwad, M.S. Radue, S. Gowtham, G.M. Odegard, Wetting simulations of high-performance polymer resins on carbon surfaces as a function of temperature using molecular dynamics. Polymers 13(13), 2162 (2021)

    Article  CAS  Google Scholar 

  60. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  61. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  62. M.S. Genidy, M.S. Madhukar, J.D. Russell, A new method to reduce cure-induced stresses in thermoset polymer composites, Part II: closed loop feedback control system. J. Compos. Mater. 34(22), 1905–1925 (2000)

    Article  CAS  Google Scholar 

  63. W.K. Goertzen, M. Kessler, Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability. Compos. A Appl. Sci. Manuf. 38(3), 779–784 (2007)

    Article  Google Scholar 

  64. J.R. Gissinger, B.D. Jensen, K.E. Wise, Modeling chemical reactions in classical molecular dynamics simulations. Polymer 128, 211–217 (2017)

    Article  CAS  Google Scholar 

  65. A. Bandyopadhyay, P.K. Valavala, T.C. Clancy, K.E. Wise, G.M. Odegard, Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11), 2445–2452 (2011)

    Article  CAS  Google Scholar 

  66. M.S. Radue, B.D. Jensen, S. Gowtham, D.R. Klimek-McDonald, J.A. King, G.M. Odegard, Comparing the mechanical response of di-, tri-, and tetra-functional resin epoxies with reactive molecular dynamics. J. Polym. Sci., Part B Polym. Phys. 56(3), 255–264 (2018)

    Article  CAS  Google Scholar 

  67. R.J. Morgan, E.E. Shin, B. Rosenberg, A. Jurek, Characterization of the cure reactions of bismaleimide composite matrices. Polymer 38(3), 639–646 (1997)

    Article  CAS  Google Scholar 

  68. B. Rozenberg, G. Bojko, R. Morgan, E. Shin, Cure mechanism of the 4, 4’-(n, n’-bismaleimide) diphenylmethane-2, 2’-diallylbisphenol a system. Bыcoкoмoлeкyляpныe coeдинeния. Cepия A 43(4), 630–645 (2001)

    CAS  Google Scholar 

  69. M.S. Radue, V. Varshney, J.W. Baur, A.K. Roy, G.M. Odegard, Molecular modeling of cross-linked polymers with complex cure pathways: a case study of bismaleimide resins. Macromolecules 51(5), 1830–1840 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by NASA's Space Technology Research Institute (STRI) under Grant NNX17AJ32G for Ultra-Strong Composites by Computational Design (US-COMP). MD simulation results were obtained using a high-performance computing cluster-SUPERIOR at Michigan Technological University in this publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geeta Sachdeva or Gregory M. Odegard.

Ethics declarations

Conflict of interest

The corresponding author declares that there is no conflict of interest on behalf of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 473 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, G., Patil, S.U., Bamane, S.S. et al. Mechanical response of polymer/BN composites investigated by molecular dynamics method. Journal of Materials Research 37, 4533–4543 (2022). https://doi.org/10.1557/s43578-022-00725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00725-9

Keywords

  • Cyanate ester
  • Boron nitride
  • Pull-apart
  • Molecular dynamics
  • Epoxy
  • BMI