Skip to main content

Advertisement

Log in

Graphene oxide sheets wrapped with poly (aniline-co-melamine) nanofibers furnished with SnO2 nanoparticles for electrochemical energy storage

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, a ternary composite of poly(aniline-co-melamine), graphene oxide (GO), and SnO2, (PMGSn) is synthesized by in-situ oxidative polymerization. The morphology, composition, and structure of the composite were analyzed by Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). The electrochemical studies of PMGSn-1, PMGSn-2, and PMGSn-3 in the three-electrode cell revealed specific capacity values of 172, 126.4, and 90.73 C/g at a scan rate of 3 mV/s, respectively. The supercapattery was fabricated using PMGSn-1 composite-based electrode as the positive and AC as a negative electrode, which displayed an energy density of 23.16 Wh/kg and power density of 695 W/kg at a current density of 1.39 A/g, with capacity retention of 85.3% after 4000 cycles. The synergistic effect among the constituents of PMGSn-1 is credited to its best electrochemical performance compared to its counterpart composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data and materials involved in this research are available in the manuscript.

References

  1. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017)

    Article  Google Scholar 

  2. M. Aadil et al., Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. J. Alloys Compd. 844, 156062 (2020)

    Article  CAS  Google Scholar 

  3. T.-H. Nguyen et al., Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochim. Acta 367, 137563 (2021)

    Article  Google Scholar 

  4. J. Iqbal et al., Hydrothermally Assisted synthesis of porous polyaniline@ carbon nanotubes-manganese dioxide ternary composite for potential application in supercapattery. Polymers 12(12), 2918 (2020)

    Article  CAS  Google Scholar 

  5. Y. Fan et al., PANI-Co3O4 with excellent specific capacitance as an electrode for supercapacitors. Ceram. Int. 47(6), 8433–8440 (2021)

    Article  CAS  Google Scholar 

  6. C. Sandhya et al., Polyaniline-cobalt oxide nano shrubs based electrodes for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 324, 134876 (2019)

    Article  Google Scholar 

  7. M. Usman et al., In situ synthesis of a polyaniline/Fe–Ni codoped Co3O4 composite for the electrode material of supercapacitors with improved cyclic stability. ACS Omega 6(2), 1190–1196 (2021)

    Article  CAS  Google Scholar 

  8. R. Liang et al., Transition metal oxide electrode materials for supercapacitors: a review of recent developments. Nanomaterials 11(5), 1248 (2021)

    Article  CAS  Google Scholar 

  9. S. Liu et al., Molten salt-confined pyrolysis towards carbon nanotube-backboned microporous carbon for high-energy-density and durable supercapacitor electrodes. Nanotechnology 32(9), 095605 (2020)

    Article  Google Scholar 

  10. M. Zhang et al., MoO2 coated few layers of MoS2 and FeS2 nanoflower decorated S-doped graphene interoverlapped network for high-energy asymmetric supercapacitor. J. Colloid Interface Sci. 584, 418–428 (2021)

    Article  CAS  Google Scholar 

  11. T. Pettong et al., High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl. Mater. Interfaces 8(49), 34045–34053 (2016)

    Article  CAS  Google Scholar 

  12. W. Zhou et al., Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance. Electrochim. Acta 176, 594–603 (2015)

    Article  CAS  Google Scholar 

  13. L. Sun et al., Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors. J. Alloys Compd. 849, 156666 (2020)

    Article  CAS  Google Scholar 

  14. S. Najib, E.J.N.A. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1(8), 2817–2827 (2019)

    Article  Google Scholar 

  15. S. Ramesh et al., Cubic nanostructure of Co3O4@ nitrogen doped graphene oxide/polyindole composite efficient electrodes for high performance energy storage applications. J. Mater. Res. Technol. 9(5), 11464–11475 (2020)

    Article  CAS  Google Scholar 

  16. D. Xiong et al., Rational design of hybrid Co3O4/graphene films: free-standing flexible electrodes for high performance supercapacitors. Electrochim. Acta 259, 338–347 (2018)

    Article  CAS  Google Scholar 

  17. J. Jiang et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)

    Article  CAS  Google Scholar 

  18. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  CAS  Google Scholar 

  19. X. Yin et al., Hierarchical core-shell structure of NiCo2O4 nanosheets@ HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem. Eng. J. 392, 124820 (2020)

    Article  CAS  Google Scholar 

  20. H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2(5), 781–794 (2012)

    Article  CAS  Google Scholar 

  21. M. Khalaj et al., Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188, 116088 (2019)

    Article  CAS  Google Scholar 

  22. H. Lin et al., Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 191, 444–451 (2016)

    Article  CAS  Google Scholar 

  23. E. Payami et al., Design and synthesis of ternary GO-Fc/Mn3O4/PANI nanocomposite for energy storage applications. J. Alloys Compd. 829, 154485 (2020)

    Article  CAS  Google Scholar 

  24. A. Pathak et al., Enhanced pseudocapacitance of MoO3-reduced graphene oxide hybrids with insight from density functional theory investigations. J. Phys. Chem. C 121(35), 18992–19001 (2017)

    Article  CAS  Google Scholar 

  25. S. Asaithambi et al., Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 31, 101530 (2020)

    Article  Google Scholar 

  26. K. Manikandan et al., Size–strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Adv. 6(93), 90559–90570 (2016)

    Article  CAS  Google Scholar 

  27. Q. Wang et al., Network structure of SnO2 hollow sphere/PANI nanocomposites for electrochemical performance. Dalton Trans. 47(7), 2368–2375 (2018)

    Article  CAS  Google Scholar 

  28. X. Fan et al., Investigation of the capacitive performance of polyaniline/modified graphite composite electrodes. RSC Adv. 5(5), 3743–3747 (2015)

    Article  CAS  Google Scholar 

  29. M. Padmini, P. Elumalai, P.J.E.A. Thomas, Symmetric supercapacitor performances of CaCu3Ti4O12 decorated polyaniline nanocomposite. Electrochim. Acta 292, 558–567 (2018)

    Article  CAS  Google Scholar 

  30. A.C. Nwanya et al., Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method. Electrochim. Acta 128, 218–225 (2014)

    Article  CAS  Google Scholar 

  31. H. Mahdavi et al., Enhancing supercapacitive performance of polyaniline by interfacial copolymerization with melamine. J. Mater. Sci.: Mater. Electron. 27(7), 7407–7414 (2016)

    CAS  Google Scholar 

  32. Z. Hai et al., Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl. Surf. Sci. 361, 57–62 (2016)

    Article  CAS  Google Scholar 

  33. B. Liu et al., 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J. Mater. Chem. A 4(9), 3287–3296 (2016)

    Article  CAS  Google Scholar 

  34. J. Iqbal et al., Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochim. Acta 348, 136313 (2020)

    Article  CAS  Google Scholar 

  35. T. Yu et al., Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 222, 12–19 (2016)

    Article  CAS  Google Scholar 

  36. W. Wang et al., One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochim. Acta 108, 118–126 (2013)

    Article  CAS  Google Scholar 

  37. Y. Jin et al., Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloids Surf. A 464, 17–25 (2015)

    Article  CAS  Google Scholar 

  38. G. Chen et al., SnO2-decorated graphene/polyaniline nanocomposite for a high-performance supercapacitor electrode. J. Mater. Sci. Technol. 31(11), 1101–1107 (2015)

    Article  CAS  Google Scholar 

  39. P. Asen, S.J. Shahrokhian, One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor. Int. J. Hydrog. Energy 42(33), 21073–21085 (2017)

    Article  CAS  Google Scholar 

  40. M. Kandasamy et al., Experimental and theoretical investigation of the energy-storage behavior of a polyaniline-linked reduced-graphene-oxide–SnO2 ternary nanohybrid electrode. Phys. Rev. Appl. 14(2), 024067 (2020)

    Article  CAS  Google Scholar 

  41. M. Karpuraranjith, S.J. Thambidurai, Twist fibrous structure of CS–SnO2–PANI ternary hybrid composite for electrochemical capacitance performance. RSC Adv. 6(46), 40567–40576 (2016)

    Article  CAS  Google Scholar 

  42. R. Teimuri-Mofrad, E. Payami, I.J.E.A. Ahadzadeh, Synthesis, characterization and electrochemical evaluation of a novel high performance GO-Fc/PANI nanocomposite for supercapacitor applications. Electrochim. Acta 321, 134706 (2019)

    Article  CAS  Google Scholar 

  43. Y. Zhang et al., Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv. 7(85), 54031–54038 (2017)

    Article  CAS  Google Scholar 

  44. J. Stejskal, R. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74(5), 857–867 (2002)

    Article  CAS  Google Scholar 

  45. S. Kulkarni et al., Synthesis and evaluation of gas sensing properties of PANI, PANI/SnO2 and PANI/SnO2/rGO nanocomposites at room temperature. Inorg. Chem. Commun. 96, 90–96 (2018)

    Article  CAS  Google Scholar 

  46. K. Wongsaprom, R.-A. Bornphotsawatkun, E. Swatsitang, Synthesis and characterization of tin oxide (SnO2) nanocrystalline powders by a simple modified sol–gel route. Appl. Phys. A 114(2), 373–379 (2014)

    Article  CAS  Google Scholar 

  47. S. Navazani et al., Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@ reduced graphene oxide-polyaniline ternary nanohybrid. Mater. Sci. Semicond. Process. 88, 139–147 (2018)

    Article  CAS  Google Scholar 

  48. H. Wang et al., Photochemical growth of nanoporous SnO2 at the air–water interface and its high photocatalytic activity. J. Mater. Chem. 20(27), 5641–5645 (2010)

    Article  CAS  Google Scholar 

  49. Y. Wang et al., Fabrication and characterization of graphene oxide/polyaniline electrode composite for high performance supercapacitors. ECS J. Solid State Sci. Technol. 8(11), M103 (2019)

    Article  CAS  Google Scholar 

  50. Z. Wang et al., In-situ polymerization to prepare reduced graphene oxide/polyaniline composites for high performance supercapacitors. J. Energy Storage 32, 101742 (2020)

    Article  Google Scholar 

  51. S. Shahabuddin et al., Synthesis of chitosan grafted-polyaniline/Co3O4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv. 5(102), 83857–83867 (2015)

    Article  CAS  Google Scholar 

  52. M. Mitra et al., Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015)

    Article  CAS  Google Scholar 

  53. G. Xu et al., Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Ind. Eng. Chem. Res. 51(44), 14390–14398 (2012)

    Article  CAS  Google Scholar 

  54. P. Maroufi et al., New nitrogen-rich flame retardant based on conductive poly (aniline-co-melamine). React. Funct. Polym. 150, 104548 (2020)

    Article  CAS  Google Scholar 

  55. J.-J. Shim, Ultrasmall SnO2 nanoparticle-intercalated graphene@ polyaniline composites as an active electrode material for supercapacitors in different electrolytes. Synth. Metals 207, 110–115 (2015)

    Article  Google Scholar 

  56. A.K. Tiwari et al., SnO2: PANI modified cathode for performance enhancement of air-cathode microbial fuel cell. J. Environ. Chem. Eng. 8(1), 103590 (2020)

    Article  CAS  Google Scholar 

  57. D. Li et al., One-pot synthesis and electrochemical properties of graphene/SnO2/poly (p-phenylenediamine) ternary nanocomposites. J. Alloys Compd. 652, 9–17 (2015)

    Article  CAS  Google Scholar 

  58. Y. Duan et al., First-principles calculations of graphene-based polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures. RSC Adv. 6(77), 73915–73923 (2016)

    Article  CAS  Google Scholar 

  59. Y. Wang et al., In situ strategy to prepare PDPB/SnO2 p–n heterojunction with a high photocatalytic activity. RSC Adv. 7(39), 24064–24069 (2017)

    Article  Google Scholar 

  60. K. Thiyagarajan, K.J. Sivakumar, Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO 2 nanocomposites. J. Mater. Sci. 52(13), 8084–8096 (2017)

    Article  CAS  Google Scholar 

  61. Q. Feng et al., Preparation and gas sensing properties of PANI/SnO2 hybrid material. Polymers 13(9), 1360 (2021)

    Article  CAS  Google Scholar 

  62. S. Biswas, S. Bhattacharya, Influence of SnO2 nanoparticles on the relaxation dynamics of the conductive processes in polyaniline. Phys. Lett. A 381(39), 3424–3430 (2017)

    Article  CAS  Google Scholar 

  63. J. Zahirifar et al., Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation. Desalination 428, 227–239 (2018)

    Article  CAS  Google Scholar 

  64. L. Huang et al., Core–shell SiO2@ RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J. Mater. Chem. A 2(43), 18246–18255 (2014)

    Article  CAS  Google Scholar 

  65. T. Tene et al., Toward large-scale production of oxidized graphene. Nanomaterials 10(2), 279 (2020)

    Article  CAS  Google Scholar 

  66. F. Khurshid et al., Aryl fluoride functionalized graphene oxides for excellent room temperature ammonia sensitivity/selectivity. RSC Adv. 8(36), 20440–20449 (2018)

    Article  CAS  Google Scholar 

  67. J. Iqbal et al., High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim. Acta 278, 72–82 (2018)

    Article  CAS  Google Scholar 

  68. W. Jiang et al., Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: the role of an aqueous electrolyte. Inorg. Chem. Front. 4(10), 1642–1648 (2017)

    Article  CAS  Google Scholar 

  69. S. Ramesh et al., High-performance N-doped MWCNT/GO/cellulose hybrid composites for supercapacitor electrodes. RSC Adv. 7(78), 49799–49809 (2017)

    Article  CAS  Google Scholar 

  70. V. Velmurugan et al., Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 84, 145–151 (2016)

    Article  CAS  Google Scholar 

  71. H.-W. Park et al., Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 6(9), 7624–7633 (2012)

    Article  CAS  Google Scholar 

  72. E. Song, J.-W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3), 498–523 (2013)

    Article  CAS  Google Scholar 

  73. A. Korent et al., A correlative study of polyaniline electropolymerization and its electrochromic behavior. J. Electrochem. Soc. 167(10), 106504 (2020)

    Article  CAS  Google Scholar 

  74. L. Wang et al., In situ preparation of SnO2@ polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2(22), 8334–8341 (2014)

    Article  CAS  Google Scholar 

  75. S. Arunachalam et al., Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. 5(3), 259–273 (2020)

    Article  Google Scholar 

  76. G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62(4), 173–202 (2017)

    Article  CAS  Google Scholar 

  77. F.S. Omar et al., Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochim. Acta 273, 216–228 (2018)

    Article  CAS  Google Scholar 

  78. A. Numan et al., Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. J. Alloys Compd. 819, 153019 (2020)

    Article  CAS  Google Scholar 

  79. G. Lamdhade et al., SnO2 nanoparticles synthesis via liquid-phase co-precipitation technique. Adv. Mater. 6(8), 738–742 (2015)

    CAS  Google Scholar 

  80. A.N. Naje, A.S. Norry, A.M. Suhail, Preparation and characterization of SnO2 nanoparticles. Int. J. Innov. Res. Sci. Eng. Technol. 2(12), 7068–7072 (2013)

    Google Scholar 

  81. A. Bouaine et al., Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C 111(7), 2924–2928 (2007)

    Article  CAS  Google Scholar 

  82. V. Kumar et al., Effect of solvent on the synthesis of SnO2 nanoparticles, in AIP conerence proeedings. (AIP Publishing, Melville, 2016)

  83. B. Paulchamy, G. Arthi, B. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol. 6(1), 1 (2015)

    Google Scholar 

  84. S. Shahabuddin et al., Synthesis and characterization of Co3O4 nanocube-doped polyaniline nanocomposites with enhanced methyl orange adsorption from aqueous solution. RSC Adv. 6(49), 43388–43400 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by King Khalid University through a Grant (KKU/RCAMS/22) under the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia. We acknowledge the support from Hazara University Mansehra, COMSATS University Abbottabad, and Graphene & Advanced 2D Materials and Research Group, School of Engineering & Technology, Sunway University 47500, Bandar Sunway, Malaysia to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadullah Mir or Arshid Numan.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3095 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Rehman, W., Mir, S. et al. Graphene oxide sheets wrapped with poly (aniline-co-melamine) nanofibers furnished with SnO2 nanoparticles for electrochemical energy storage. Journal of Materials Research 37, 3505–3521 (2022). https://doi.org/10.1557/s43578-022-00718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00718-8

Keywords

Navigation