Skip to main content
Log in

Tribological and neutron radiation properties of boron nitride nanotubes reinforced titanium composites under lunar environment

  • Invited Paper
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study reports the tribological behavior, and radiation shielding performance of a multifunctional boron nitride nanotube (BNNT) reinforced titanium metal matrix composite (MMC) for applications in lunar exploration. BNNT-Ti MMCs showed 10.2 and 25.5% improvements in wear volume loss compared to pristine Ti samples with and without lunar simulant, respectively. For neutron radiation shielding evaluation, an additional set of samples with similar compositions was sintered at 750 °C. The decreased sintering temperature from 950 to 750 °C prevented BNNTs from interfacial reactions with the Ti matrix during sintering. The highest neutron attenuation was observed in BNNT-Ti MMC sintered at 750 °C, followed by the one sintered at 950 °C and pristine Ti sample. Maximum 45 and 50% improvements in linear and mass absorption coefficient were shown, respectively. This study proves that adding BNNTs to the Ti alloy matrix greatly enhanced the wear resistance, yield strength, and radiation shielding performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data will be available if requested.

Code availability

Not applicable.

References

  1. C. Lutjering, J.C. William, Titanium, 2nd edn. (Springer, New York, 2007)

    Google Scholar 

  2. M.D. Hayat, H. Singh, Z. He, P. Cao, Titanium metal matrix composites: An overview. Compos. A Appl. Sci. Manuf. 121, 418–438 (2019). https://doi.org/10.1016/j.compositesa.2019.04.005

    Article  CAS  Google Scholar 

  3. C. Cui, B. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects, and industry development. Mater. Des. 32(3), 1684–1691 (2011). https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  4. R.R. Boyer, An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 213(1–2), 103–114 (1996). https://doi.org/10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  5. D. Vaniman, R. Reedy, G. Heiken, G. Olhoeft, W. Mendell, The lunar environment. The lunar Sourcebook, CUP (1991), pp 27–60

  6. J.E. Colwell, S. Batiste, M. Horányi, S. Robertson, S. Sture, Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 45(2), 10 (2007). https://doi.org/10.1029/2005RG000184

    Article  Google Scholar 

  7. Gaier, J.R., 2007. The effects of lunar dust on EVA systems during the Apollo missions (No. NASA/TM-2005-213610/REV1).

  8. N.A. Schwadron, T. Baker, B. Blake, A.W. Case, J.F. Cooper, M. Golightly, A. Jordan, C. Joyce, J. Kasper, K. Kozarev, J. Mislinski, Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). J. Geophys. Res. 117(E12), 10 (2012). https://doi.org/10.1029/2011JE003978

    Article  CAS  Google Scholar 

  9. W.D. Carrier III, G.R. Olhoeft, W. Mendell, Physical properties of the lunar surface. Lunar sourcebook (1991), pp. 475–594

  10. G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige, K. Raney, M. Robinson, Lunar Reconnaissance Orbiter overview: The instrument suite and mission. Space Sci. Rev. 129(4), 391–419 (2007). https://doi.org/10.1007/s11214-007-9153-y

    Article  Google Scholar 

  11. M.S. Clowdsley, J.W. Wilson, M.H.Y. Kim, R.C. Singleterry, R.K. Tripathi, J.H. Heinbockel, F.F. Badavi, J.L. Shinn, Neutron environments on the Martian surface. Phys. Med. 17, 94–96 (2001)

    Google Scholar 

  12. J.W. Wilson, M.S. Clowdsley, J.L. Shinn, R.C. Singleterry, R.K. Tripathi, F.A. Cucinotta, J.H. Heinbockel, F.F. Badavi, W. Atwell, Neutrons in space: Shield models and design issues. No. 2000-01-2414. SAE Technical Paper, 2000. https://doi.org/10.4271/2000-01-2414

  13. J. Köhler, C. Zeitlin, B. Ehresmann, R.F. Wimmer-Schweingruber, D.M. Hassler, G. Reitz, D.E. Brinza, G. Weigle, J. Appel, S. Böttcher, E. Böhm, Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res. 119(3), 594–603 (2014). https://doi.org/10.1002/2013JE004539

    Article  CAS  Google Scholar 

  14. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269(5226), 966–967 (1995)

    Article  CAS  Google Scholar 

  15. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19(18), 2413–2432 (2007)

    Article  CAS  Google Scholar 

  16. P. Nautiyal, C. Rudolf, A. Loganathan, C. Zhang, B. Boesl, A. Agarwal, Directionally aligned ultra-long boron nitride nanotube induced strengthening of aluminum-based sandwich composite. Adv. Eng. Mater. 18(10), 1747–1754 (2016). https://doi.org/10.1002/adem.201600212

    Article  CAS  Google Scholar 

  17. M.M.H. Bhuiyan, J. Wang, L.H. Li, P. Hodgson, A. Agarwal, M. Qian, Y. Chen, Boron nitride nanotube-reinforced titanium metal matrix composites with excellent high-temperature performance. J. Mater. Res. 32(19), 3744–3752 (2017). https://doi.org/10.1557/jmr.2017.345

    Article  CAS  Google Scholar 

  18. J. Bustillos, X. Lu, P. Nautiyal, C. Zhang, B. Boesl, A. Agarwal, Boron nitride nanotube-reinforced titanium composite with controlled interfacial reactions by spark plasma sintering. Adv. Eng. Mater. 22(12), 2000702 (2020). https://doi.org/10.1002/adem.202000702

    Article  CAS  Google Scholar 

  19. Q. Chao, S. Mateti, M. Annasamy, M. Imran, J. Joseph, Q. Cai, L.H. Li, P. Cizek, P.D. Hodgson, Y. Chen, D. Fabijanic, Nanoparticle-mediated ultra-grain refinement and reinforcement in additively manufactured titanium alloys. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102173

    Article  Google Scholar 

  20. S.T. Abdulrahman, Z. Ahmad, S. Thomas, A.A. Rahman, Introduction to neutron-shielding materials. In Micro and Nanostructured Composite Materials for Neutron Shielding Applications (Woodhead Publishing, Sawston, 2020)

    Google Scholar 

  21. M. Ghazizadeh, J.E. Estevez, A.D. Kelkar, Boron nitride nanotubes for space radiation shielding. Int. J. Nano Stud. Technol 4, 1–2 (2015). https://doi.org/10.19070/2167-8685-150007e

    Article  Google Scholar 

  22. J.H. Kim, T.V. Pham, J.H. Hwang, C.S. Kim, M.J. Kim, Boron nitride nanotubes: Synthesis and applications. Nano Converg. 5(1), 1–13 (2018). https://doi.org/10.1186/s40580-018-0149-y

    Article  CAS  Google Scholar 

  23. J.H. Kang, G. Sauti, C. Park, V.I. Yamakov, K.E. Wise, S.E. Lowther, C.C. Fay, S.A. Thibeault, R.G. Bryant, Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 9(12), 11942–11950 (2015). https://doi.org/10.1021/acsnano.5b04526

    Article  CAS  Google Scholar 

  24. S.A. Thibeault, J.H. Kang, G. Sauti, C. Park, C.C. Fay, G.C. King, Nanomaterials for radiation shielding. MRS Bull. 40(10), 836–841 (2015). https://doi.org/10.1557/mrs.2015.225

    Article  CAS  Google Scholar 

  25. S.H. Choi, R.W. Moses, C. Park, C.C. Fay, Multipurpose Cassegrain System, in Earth and Space (2020), pp. 1156–1165

  26. D. Lahiri, V. Singh, A.K. Keshri, S. Seal, A. Agarwal, Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties. Carbon 48(11), 3103–3120 (2010). https://doi.org/10.1016/j.carbon.2010.04.047

    Article  CAS  Google Scholar 

  27. D. Banerjee, J.C. Williams, Perspectives on titanium science and technology. Acta Mater. 61(3), 844–879 (2013). https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  Google Scholar 

  28. C.A. Crow, S.A. Crowther, K.D. McKeegan, G. Turner, H. Busemann, J.D. Gilmour, Xenon systematics of individual lunar zircons, a new window on the history of the lunar surface. Geochim. Cosmochim. Acta 286, 103–118 (2020). https://doi.org/10.1016/j.gca.2020.06.019

    Article  CAS  Google Scholar 

  29. Y.T. Tang, J.E. Campbell, M. Burley, J. Dean, R.C. Reed, T.W. Clyne, Use of indentation plastometry to obtain stress-strain curves from small superalloy components made by additive manufacturing. SSRN (2020). https://doi.org/10.2139/ssrn.3708730

    Article  Google Scholar 

  30. J. Dean, T.W. Clyne, Extraction of plasticity parameters from a single test using a spherical indenter and FEM modeling. Mech. Mater. 105, 112–122 (2017). https://doi.org/10.1016/j.mechmat.2016.11.014

    Article  Google Scholar 

  31. J.E. Campbell, R.P. Thompson, J. Dean, T.W. Clyne, Experimental and computational issues for automated extraction of plasticity parameters from spherical indentation. Mech. Mater. 124, 118–131 (2018). https://doi.org/10.1016/j.mechmat.2018.06.004

    Article  Google Scholar 

  32. J.E. Campbell, R.P. Thompson, J. Dean, T.W. Clyne, Comparison between stress-strain plots obtained from indentation plastometry, based on residual indent profiles, and from uniaxial testing. Acta Mater. 168, 87–99 (2019). https://doi.org/10.1016/j.actamat.2019.02.006

    Article  CAS  Google Scholar 

  33. Y.T. Tang, J.E. Campbell, M. Burley, J. Dean, R.C. Reed, T.W. Clyne, Profilometry-based indentation plastometry to obtain stress-strain curves from anisotropic superalloy components made by additive manufacturing. Materialia (2021). https://doi.org/10.1016/j.mtla.2021.101017

    Article  Google Scholar 

  34. J.E. Campbell, H. Zhang, M. Burley, M. Gee, A.T. Fry, J. Dean, T.W. Clyne, A critical appraisal of the instrumented indentation technique and profilometry-based inverse finite element method indentation plastometry for obtaining stress-strain curves. Adv. Eng. Mater. 23(5), 2001496 (2021). https://doi.org/10.1002/adem.202001496

    Article  Google Scholar 

  35. T.W. Clyne, J.E. Campbell, M. Burley, J. Dean, Profilometry-based inverse finite element method indentation plastometry. Adv. Eng. Mater. 23(9), 2100437 (2021). https://doi.org/10.1002/adem.202100437

    Article  Google Scholar 

  36. M. Burley, J.E. Campbell, R. Reiff-Musgrove, J. Dean, T.W. Clyne, The effect of residual stresses on stress-strain curves obtained via profilometry-based inverse finite element method indentation plastometry. Adv. Eng. Mater. 23(5), 2001478 (2021). https://doi.org/10.1002/adem.202001478

    Article  Google Scholar 

  37. W. Gu, J. Campbell, Y. Tang, H. Safaie, R. Johnston, Y. Gu, C. Pleydell-Pearce, M. Burley, J. Dean, T.W. Clyne, Indentation plastometry of welds. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202101645

    Article  Google Scholar 

  38. J.E. Campbell, M. Gaiser-Porter, W. Gu, S. Ooi, M. Burley, J. Dean, T.W. Clyne, Indentation plastometry of very hard metals. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202101398

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from NASA through grant 80NSSC20M0175 and the characterization facilities provided by Advanced Materials Engineering Research Institute (AMERI) at FIU.

Funding

Arvind Agarwal acknowledges the funding received from NASA through grant 80NSSC20M0175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Agarwal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2021 kb).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacca, N., Zhang, C., Paul, T. et al. Tribological and neutron radiation properties of boron nitride nanotubes reinforced titanium composites under lunar environment. Journal of Materials Research 37, 4582–4593 (2022). https://doi.org/10.1557/s43578-022-00708-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00708-w

Keywords

Navigation