Skip to main content

Advertisement

Log in

Effects of heat treatment of various pure metals on osteoblast cell activity

  • Article
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium (Ti) alloys can be applied for biomaterials of artificial bone and bone repair. However, Ti alloys are bioinert materials, i.e., they have low bone formation ability. The heat treatments of Ti alloys promote bone formation ability, but the mechanism for the promotion has not been well understood. The effects of heat treatment of titanium, zirconium, niobium, and tantalum metals on the behavior of MC3T3-E1 osteoblast-like cells during culturing in vitro were examined. The specimens were heated at temperatures from 400 to 800 °C in the air for oxidation. The oxidation of the metal surface by the heat treatment changed its surface to hydrophilic and increased the surface roughness. Cell extension and proliferation were influenced not by metal species and their oxides but by surface roughness and wettability. The hydrophilicity and smooth surface improved cell extension and cell proliferation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 45(8), 2776 (2004). https://doi.org/10.2320/matertrans.45.2776

    Article  CAS  Google Scholar 

  2. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243(1–2), 244 (1998). https://doi.org/10.1016/S0921-5093(97)00808-3

    Article  Google Scholar 

  3. D.C. Zhang, J.G. Lin, W.J. Jiang, M. Ma, Z.G. Peng, Mater. Des. 32(8–9), 4614 (2011). https://doi.org/10.1016/j.matdes.2011.03.024

    Article  CAS  Google Scholar 

  4. O. Sertan, L. Jixing, L. Yuncang, I. Rasim, W. Cuie, Acta Biomater. 20, 176 (2015). https://doi.org/10.1016/j.actbio.2015.03.023

    Article  CAS  Google Scholar 

  5. M. Zuldesmi, A. Waki, K. Kuroda, M. Okido, Mater. Sci. Eng. C 49, 430 (2015). https://doi.org/10.1016/j.msec.2015.01.031

    Article  CAS  Google Scholar 

  6. S. Fujibayashi, M. Neo, H.-M. Kim, T. Kokubo, T. Nakamura, Biomaterials 25(3), 443 (2004). https://doi.org/10.1016/s0142-9612(03)00551-9

    Article  CAS  Google Scholar 

  7. S. Atsushi, O. Chikara, T. Kanji, H. Satoshi, N. Takayoshi, O. Yoshimitsu, O. Akiyoshi, Acta Biomater. 5(1), 298 (2009). https://doi.org/10.1016/j.actbio.2008.07.014

    Article  CAS  Google Scholar 

  8. N. Matsui, K. Nozaki, K. Ishihara, K. Yamashita, A. Nagai, Mater. Sci. Eng. C 48(1), 378 (2015). https://doi.org/10.1016/j.msec.2014.12.042

    Article  CAS  Google Scholar 

  9. D. Yamamoto, A. Waki, K. Kuroda, R. Ichino, M. Okido, M. Ueda, M. Ikeda, M. Niinomi, A. Seki, J. Biomater. Nanobiotechnol. 4, 229 (2013). https://doi.org/10.4236/jbnb.2013.43028

    Article  Google Scholar 

  10. S. Yamaguchi, H. Hashimoto, R. Nakai, H. Takadama, Materials (Basel) 10(10), 1127 (2017). https://doi.org/10.3390/2Fma10101127

    Article  Google Scholar 

  11. Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, T. Hanawa, Corros. Sci. 50(8), 2111 (2008). https://doi.org/10.1016/j.corsci.2008.06.002

    Article  CAS  Google Scholar 

  12. C. Sittig, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, J. Mater. Sci. Mater. Med. 10(1), 35 (1999)

    Article  CAS  Google Scholar 

  13. A. Sugino, K. Tsuru, S. Hayakawa, K. Kikuta, G. Kawachi, A. Osaka, C. Ohtsuki, J. Ceram. Soc. Jpn. 117(1364), 515 (2009). https://doi.org/10.2109/jcersj2.117.515

    Article  CAS  Google Scholar 

  14. T. Kurachi, H. Nagao, N. Hideaki, S. Enomoto, Arch. Oral Biol. 42(6), 465 (1997). https://doi.org/10.1016/S0003-9969(97)00019-8

    Article  CAS  Google Scholar 

  15. T. Umezawa, P. Chen, Y. Tsutsumi, H. Doi, M. Ashida, S. Suzuki, K. Moriyama, T. Hanawa, Dent. Mater. J. 34(5), 713 (2015). https://doi.org/10.4012/dmj.2015-018

    Article  CAS  Google Scholar 

  16. R. Olivares-Navarrete, J.J. Olaya, C. Ramírez, S.E. Rodil, Coatings 1(1), 72 (2011). https://doi.org/10.3390/coatings1010072

    Article  CAS  Google Scholar 

  17. D.M. Findlay, K. Welldon, G.J. Atkins, D.W.H.A.C.W. Zannettino, D. Bobyn, W. Howieab, Biomaterials 25(12), 2215 (2003). https://doi.org/10.1016/j.biomaterials.2003.09.005

    Article  CAS  Google Scholar 

  18. K.J. Welldon, G.J. Atkins, D.W. Howie, D.M. Findlay, J. Biomed. Mater. Res. Part A 84(3), 691 (2008). https://doi.org/10.1002/jbm.a.31336

    Article  CAS  Google Scholar 

  19. D. Zhang, C.S. Wong, C. Wen, Y. Li, J. Biomed. Mater. Res. - Part A 105(1), 148 (2017). https://doi.org/10.1002/jbm.a.35895

    Article  CAS  Google Scholar 

  20. B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, Biomaterials 24(25), 4663 (2003). https://doi.org/10.1016/S0142-9612(03)00366-1

    Article  CAS  Google Scholar 

  21. Y. Yokoi, Materials (Basel) 14(16), 4414 (2021). https://doi.org/10.3390/ma14164414

    Article  CAS  Google Scholar 

  22. D. Ruan, C. Wu, S. Deng, Y. Zhang, G. Guan, Biomed Res. Int. (2020). https://doi.org/10.1155/2020/8032718

    Article  Google Scholar 

  23. M.G. Donoso, A. Méndez-Vilas, J.M. Bruque, M.L. González-Martin, Int. Biodeter. Biodegrad. 59(3), 245 (2007). https://doi.org/10.1016/j.ibiod.2006.09.011

    Article  CAS  Google Scholar 

  24. H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46(11), 7157 (1992). https://doi.org/10.1103/PhysRevB.46.7157

    Article  CAS  Google Scholar 

  25. S.H. Overbury, P.A. Bertrand, G.A. Somorjai, Chem. Rev. 75(5), 547 (1975). https://doi.org/10.1021/CR60297A001

    Article  CAS  Google Scholar 

  26. M. Hindié, M.-C. Degat, F. Gaudière, O. Gallet, T. Paul, R. Van, E. Pauthe, Acta Biomater. 7(1), 387 (2011). https://doi.org/10.1016/j.actbio.2010.08.001

    Article  CAS  Google Scholar 

  27. S.C. Sartoretto, A.T.N.N. Alves, R.F.B. Resende, J. Calasans-Maia, J.M. Granjeiro, M.D. Calasans-Maia, J. Appl. Oral Sci. 23(3), 272 (2015). https://doi.org/10.1590/1678-775720140483

    Article  CAS  Google Scholar 

  28. D.J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, E.N. Wang, Appl. Phys. Lett. 105, 011601 (2014). https://doi.org/10.1063/1.4886410

    Article  CAS  Google Scholar 

  29. W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M. Anpo, T. Ogawa, Biomaterials 30(29), 5352 (2009)

    Article  CAS  Google Scholar 

  30. T.S.N. Silva, D.C. Machado, C. Viezzer, A.N. Silva Júnior, M.G. de Oliveira, Acta Cirúrgica Bras. 24(3), 200 (2009). https://doi.org/10.1590/s0102-86502009000300007

    Article  Google Scholar 

  31. R.N. Wenzel, J. Phys. Chem. 53(9), 1466 (1949). https://doi.org/10.1021/j150474a015

    Article  CAS  Google Scholar 

  32. M. Ahmad, D. Gawronski, J. Blum, J. Goldberg, G. Gronowicz, J. Biomed. Mater. Res. 46(1), 121 (1999). https://doi.org/10.1002/(SICI)1097-4636(199907)46:1/3C121::AID-JBM14/3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  33. J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, Z. Schwartz, Biomaterials 19(23), 2219 (1998). https://doi.org/10.1016/s0142-9612(98)00144-6

    Article  CAS  Google Scholar 

  34. M. Lukaszewska-Kuska, P. Wirstlein, R. Majchrowski, B. Dorocka-Bobkowska, Physiol. Res. 70(3), 413 (2021). https://doi.org/10.33549/physiolres.934582

    Article  CAS  Google Scholar 

  35. P. Chauhan, Y. Shadangi, A. Bhatnagar, V. Singh, K. Chattopadhyay, J. Miner. Met. Mater. Soc. 74, 584 (2022). https://doi.org/10.1007/s11837-021-05012-2

    Article  CAS  Google Scholar 

  36. R. Meshramkar, P.K. Shetty, G.V. Anehosur, A. Nayak, K.P. Lekha, Issues Dev. Med. Med. Res. 7, 55 (2022). https://doi.org/10.9734/bpi/idmmr/v7/15361D

    Article  Google Scholar 

  37. E. Gemelli, N.H.A. Camargo, Rev. Matéria 12(3), 525 (2007)

    Google Scholar 

  38. J. Kim, H. Lee, T.S. Jang, D. Kim, C.B. Yoon, G. Han, H.E. Kim, Met. (Basel) 11(4), 618 (2021). https://doi.org/10.3390/met11040618

    Article  CAS  Google Scholar 

  39. A. Wennerberg, T. Albrektsson, Clin. Oral Implants Res. 20, 172 (2009). https://doi.org/10.1111/j.1600-0501.2009.01775.x

    Article  Google Scholar 

  40. Y. Lan, G.A. Papoian, Biophys. J. 94(10), 3839 (2008). https://doi.org/10.1529/biophysj.107.123778

    Article  CAS  Google Scholar 

  41. T. Homma, Corros. Eng. 25(4), 251 (1979). https://doi.org/10.3323/jcorr1974.25.4_251

    Article  Google Scholar 

  42. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ (1997–2012)

  43. A. Phadke, Y.R.V. Shih, S. Varghese, Macromol. Biosci. 12(8), 1022 (2012). https://doi.org/10.1002/mabi.201100289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the education and research funds of the Light Metal Educational Foundation, Inc. This work was also supported in part by JKA and its promotion funds (27-165) from Auto Race. This work was partly supported by the joint usage/research program of the Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Okano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data are available from the corresponding author upon reasonable request.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okano, S., Kiyokane, Y., Kobayashi, S. et al. Effects of heat treatment of various pure metals on osteoblast cell activity. Journal of Materials Research 37, 2614–2622 (2022). https://doi.org/10.1557/s43578-022-00691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00691-2

Keywords

Navigation