Skip to main content

Investigation of the recovery behavior of irradiation defects induced by a neutron in 4H-SiC combining Raman scattering and lattice parameters

Abstract

Nitrogen-doped 4H-SiC single crystals were neutron-irradiated at temperatures below 100 °C with a fluence of 2.67 × 1024 n/m2. The specimens were annealed isochronally from 600 to 1700 °C to evaluate the crystalline defects induced by neutron irradiation and analyze their recovery behaviors. The lattice parameters and Raman spectra were recorded. The first-order model was used to analyze the lattice parameter recovery curves, yielding the rate coefficient, and activation energies at each annealing step. Raman spectroscopy confirmed that neutron irradiation caused the formation of several new C–C homonuclear and Si–C heteronuclear bonds in the 4H-SiC network. During annealing, the evolution of Raman scattering and the recovery of lattice parameters were asynchronous. At 1500 °C, the lattice parameter recovery reaches saturation. Raman spectra, on the other hand, continue to evolve with annealing until 1700 °C. The defect recovery mechanism was discussed using activation energies and the evolution of Raman spectra.

Graphical abstract

The manuscript presents an investigation of the annealing behavior of neutron irradiated 4H-SiC. The irradiated defects recombination process is evaluated by X-ray diffractometry (XRD) and Raman scattering. X-ray single-crystal diffraction was employed to determine the lattice parameters and swelling. The quality and structure disorder of silicon carbide crystals irradiated and annealed at different temperatures were characterized by Raman spectroscopy. The relationship between Raman spectra changes and lattice recovery behavior, as well as the defect types and polytype transformation caused by irradiation were discussed. On this basis, the recovery path of irradiation defects during high temperature annealing is constructed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, J. Nucl. Mater. 371, 329 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016

    CAS  Article  Google Scholar 

  2. T. Koyanagi, D.J. Sprouster, L.L. Snead, Y. Katoh, Scripta Mater. 197, 13785 (2021). https://doi.org/10.1016/j.scriptamat.2021.113785

    CAS  Article  Google Scholar 

  3. J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996). https://doi.org/10.1016/0038-1101(96)00045-7

    Article  Google Scholar 

  4. J.B. Malherbe, J. Phys. D: Appl. Phys. 46, 473001 (2013). https://doi.org/10.1088/0022-3727/46/47/473001

    CAS  Article  Google Scholar 

  5. D. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V. Dyakonov, A.A. Soltamova, P.G. Baranov, V.A. Ilyin, G.V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012). https://doi.org/10.1103/PhysRevLett.109.226402

    CAS  Article  Google Scholar 

  6. D.J. Sprouster, T. Koyanagi, D.L. Drey, Y. Katoh, L.L. Snead, Phys. Rev. Mater. 5, 103601 (2021). https://doi.org/10.1103/physrevmaterials.5.103601

    CAS  Article  Google Scholar 

  7. T. Koyanagi, H. Wang, O. Karakoc, Y. Katoh, Materials 214, 110413 (2022). https://doi.org/10.1016/j.matdes.2022.110413

    CAS  Article  Google Scholar 

  8. L. Spindlberger, A. Csore, G. Thiering, S. Putz, R. Karhu, J.U. Hassan, N.T. Son, T. Fromherz, A. Gali, M. Trupke, Phys. Rev. Appl. 12, 014015 (2019). https://doi.org/10.1103/PhysRevApplied.12.014015

    CAS  Article  Google Scholar 

  9. Y.F. Ruan, P.F. Wang, L. Huang, W. Zhu, Key. Eng. Mater. 495, 335 (2012). https://doi.org/10.4028/www.scientific.net/KEM.495.335

    CAS  Article  Google Scholar 

  10. A.A. Campbell, W.D. Porter, Y. Katoh, L.L. Snead, Nucl. Instrum. Methods Phys. Res. B 370, 49 (2016). https://doi.org/10.1016/j.nimb.2016.01.005

    CAS  Article  Google Scholar 

  11. L.L. Snead, Y. Katoh, T. Koyanagi, K. Terrani, E.D. Specht, J. Nucl. Mater. 471, 92 (2016). https://doi.org/10.1016/j.jnucmat.2016.01.010

    CAS  Article  Google Scholar 

  12. S. Kondo, Y. Katoh, L.L. Snead, J. Nucl. Mater. 382, 160 (2008). https://doi.org/10.1016/j.jnucmat.2008.08.013

    CAS  Article  Google Scholar 

  13. L.L. Snead, Y. Katoh, T. Koyanagi, K. Terrani, J. Nucl. Mater. 514, 181 (2019). https://doi.org/10.1016/j.jnucmat.2018.12.005

    CAS  Article  Google Scholar 

  14. L.L. Snead, Y. Katoh, T. Nozawa, Compr. Nucl. Mater. 4, 215 (2012). https://doi.org/10.1016/B978-0-08-056033-5.00093-8

    CAS  Article  Google Scholar 

  15. T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, J. Nucl. Mater. 253, 78 (1998). https://doi.org/10.1016/S0022-3115(97)00331-0

    CAS  Article  Google Scholar 

  16. Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, J. Nucl. Mater. 351, 228 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.007

    CAS  Article  Google Scholar 

  17. T. Yano, Y. Futamura, S. Yamazaki, T. Sawabe, K. Yoshida, J. Nucl. Mater. 442, S399 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.296

    CAS  Article  Google Scholar 

  18. T. Pornphatdetaudom, T. Yano, K. Yoshida, Nucl. Mater. Energy 16, 24 (2018). https://doi.org/10.1016/j.nme.2018.05.027

    Article  Google Scholar 

  19. W.J. Weber, F. Gao, R. Devanathan, W. Jiang, C.M. Wang, Nucl. Instrum. Methods. Phys. Res. B 216, 25 (2004). https://doi.org/10.1016/j.nimb.2003.11.016

    CAS  Article  Google Scholar 

  20. Y. Jin, K. Yoshida, Z. Li, D. Ai, T. Maruyama, T. Yano, J. Nucl. Sci. Technol. 56, 533 (2019). https://doi.org/10.1080/00223131.2019.1602570

    CAS  Article  Google Scholar 

  21. T. Yano, Y. You, K. Kanazawa, T. Kobayashi, M. Imai, K. Yoshida, S. Yamazaki, J. Nucl. Mater. 455, 445 (2014). https://doi.org/10.1016/j.jnucmat.2014.07.068

    CAS  Article  Google Scholar 

  22. J. Davidsson, V. Ivady, R. Armiento, T. Ohshima, N.T. Son, A. Gali, I.A. Abrikosov, Appl. Phys. Lett. 114, 112107 (2019). https://doi.org/10.1063/1.5083031

    CAS  Article  Google Scholar 

  23. A. Chakravorty, B. Singh, H. Jatav, S. Ojha, J. Singh, D. Kanjilal, D. Kabiraj, J. Appl. Phys. 128, 165901 (2020). https://doi.org/10.1063/5.0025944

    CAS  Article  Google Scholar 

  24. S. Agarwal, G. Duscher, Y. Zhao, M.L. Crespillo, Y. Katoh, W.J. Weber, Acta Mater. 161, 207 (2018). https://doi.org/10.1016/j.actamat.2018.09.012

    CAS  Article  Google Scholar 

  25. X. Chen, X. Wang, D. Fang, Fuller. Nanotube Carbon Nanostruct. 28, 1048 (2020). https://doi.org/10.1080/1536383X.2020.1794851

    CAS  Article  Google Scholar 

  26. W.F. Egelhoff, Surf. Sci. Rep. 6, 253 (1987). https://doi.org/10.1016/0167-5729(87)90007-0

    Article  Google Scholar 

  27. Y. Hu, J. Liu, W. Dou, K. Mao, L. Guo, L. Chong, J. Hu, H. Yuan, Y. He, H. Guo, Y. Zhang, Carbon 157, 340 (2020). https://doi.org/10.1016/j.carbon.2019.10.043

    CAS  Article  Google Scholar 

  28. A. Regoutz, G. Pobegenb, T. Aichinger, J. Mater. Chem. C. 6, 12079 (2018). https://doi.org/10.1039/C8TC02935K

    CAS  Article  Google Scholar 

  29. D. Li, Y. Zhang, X. Tang, Y. He, H. Yuan, Y. Jia, Q. Song, M. Zhang, Y. Zhang, Nanomaterials 10, 1332 (2020). https://doi.org/10.3390/nano10071332

    CAS  Article  Google Scholar 

  30. D.W. Feldman, J.H. Parker Jr., W.J. Choyke, L. Patrick, Phys. Rev. 173, 787 (1968). https://doi.org/10.1103/PhysRev.173.787

    CAS  Article  Google Scholar 

  31. J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, I.T. Ferguson, Phys. Rev. B 59, 7282 (1999). https://doi.org/10.1103/PhysRevB.59.7282

    CAS  Article  Google Scholar 

  32. P.F. Wang, L. Huang, W. Zhu, Y.F. Ruan, Solid State Commun. 152, 887 (2012). https://doi.org/10.1016/j.ssc.2012.02.010

    CAS  Article  Google Scholar 

  33. M.J. Madito, T.T. Hlatshwayo, C.B. Mtshali, Appl. Surf. Sci. 538, 148099 (2021). https://doi.org/10.1016/j.apsusc.2020.148099

    CAS  Article  Google Scholar 

  34. Y. Daigo, A. Ishiguro, Y. Moriyama, I. Mizushima, J. Cryst. Growth 574, 126329 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126329

    CAS  Article  Google Scholar 

  35. P.F. Wang, Y.F. Ruan, L. Huang, W. Zhu, J. Appl. Phys. 111, 063517 (2012). https://doi.org/10.1063/1.3697681

    CAS  Article  Google Scholar 

  36. U. Gerstmann, E. Rauls, Th. Frauenheim, H. Overhof, Phys. Rev. B 67, 205202 (2003). https://doi.org/10.1103/PhysRevB.67.205202

    CAS  Article  Google Scholar 

  37. S. Sorieul, J.M. Costantini, L. Gosmain, L. Thomé, J.J. Grob, J. Phys. Condens. Matter. 18, 5235 (2006). https://doi.org/10.1088/0953-8984/18/37/008

    CAS  Article  Google Scholar 

  38. A. Mattausch, M. Bockstedte, O. Pankratov, Phys. Rev. B 70, 235211 (2004). https://doi.org/10.1103/PhysRevB.70.235211

    CAS  Article  Google Scholar 

  39. F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, Phys. Rev. B 64, 245208 (2001). https://doi.org/10.1103/PhysRevB.64.245208

    CAS  Article  Google Scholar 

  40. F. Gao, W.J. Weber, Nucl. Instrum. Methods. Phys. Res. B 191, 504 (2002). https://doi.org/10.1016/S0168-583X(02)00600-6

    CAS  Article  Google Scholar 

  41. Q. Wang, N. Gui, X.L. Huang, X.T. Yang, J.Y. Tu, S.Y. Jiang, Int. J. Heat Mass Transf. 180, 121822 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121822

    CAS  Article  Google Scholar 

  42. W.L. Liao, C.H. He, H. He, Radiat. Eff. Defects Solids 174, 729 (2019). https://doi.org/10.1080/10420150.2019.1649260

    CAS  Article  Google Scholar 

  43. M.I. Idris, S. Yamazaki, K. Yoshida, T. Yano, J. Nucl. Mater. 465, 814 (2015). https://doi.org/10.1016/j.jnucmat.2015.07.046

    CAS  Article  Google Scholar 

  44. V.D. Blank, V.V. Aksenenkov, M.Y. Popov, S.A. Perfilov, B.A. Kulnitskiy, Y.V. Tatyanin, O.M. Zhigalina, B.N. Mavrin, V.N. Denisov, A.N. Ivlev, V.M. Chernov, V.A. Stepanov, Diam. Relat. Mater. 8, 1285 (1999). https://doi.org/10.1016/S0925-9635(99)00118-1

    CAS  Article  Google Scholar 

  45. S. Agarwal, Q. Chen, T. Koyanagi, Y. Zhao, S.J. Zinkle, W.J. Weber, J. Nucl. Mater. 526, 151778 (2019). https://doi.org/10.1016/j.jnucmat.2019.151778

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Aeronautical Science Fund Nos. 201834Y2001 and 2018ZD34001. Natural Science Foundation of Tianjin City (20YDTPJC01540) and Postgraduate Innovation Project of Tianjin (2021YJSO2S20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouchao Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, Y., Liu, H. et al. Investigation of the recovery behavior of irradiation defects induced by a neutron in 4H-SiC combining Raman scattering and lattice parameters. Journal of Materials Research (2022). https://doi.org/10.1557/s43578-022-00687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-022-00687-y

Keywords

  • Annealing
  • Neutron irradiation
  • X-ray photoelectron spectroscopy (XPS)
  • X-ray diffraction (XRD)
  • Raman spectroscopy