Skip to main content
Log in

Modifications in ferromagnetic properties of MnAl bilayer thin films induced by swift heavy ion irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we report the effects of swift heavy ion (SHI) irradiation on structural, microstructural, and magnetic properties of Mn/Al bilayer thin films deposited by the evaporation technique. The as-deposited thin films were irradiated by a 100 MeV Ag ion beam with different fluences (1 × 1013–1 × 1014 ions/cm2). The enhanced ferromagnetic properties with perpendicular magnetic anisotropy have been achieved in the irradiated films with the increase in irradiation fluence, which were supported by the GIXRD, VSM, and MOKE results. The AFM study suggests that the average grain size was obtained in the range of 32–67 nm for all the films. The present study demonstrates that SHI irradiation improves the ferromagnetic properties of Mn/Al bilayer thin film, which makes it a promising material for rare-earth-free permanent magnets and spintronic applications.

Graphical abstract

The graphical abstract shows the schematic diagrams of (a) the crystal structure of τ-MnAl alloy; (b) the as-deposited Mn/Al bilayer thin film on a Si substrate; (c) polar and longitudinal MOKE configuration with orientation of magnetization (M), direction of incidence (i) and reflection (r) of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Experimental data used in this study are available from the corresponding author upon reasonable request.

Consent for publication

All authors agree for the publication.

References

  1. S.H. Nie, L.J. Zhu, J. Lu, D. Pan, H.L. Wang, X.Z. Yu, J.X. Xiao, J.H. Zhao, Perpendicularly magnetized τ-MnAl (001) thin films epitaxied on GaAs. Appl. Phys. Lett. 102, 152405 (2013). https://doi.org/10.1063/1.4801932

    Article  CAS  Google Scholar 

  2. E.Y. Huang, M.H. Kryder, Fabrication of MnAl thin films with perpendicular anisotropy on Si substrates. J. Appl. Phys. 117, 17E314 (2015). https://doi.org/10.1063/1.4915093

    Article  CAS  Google Scholar 

  3. J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, N. Neveu, S.G. Kim, C.J. Choi, J.G. Lee, Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. Appl. Phys. Lett. 107, 09A73 (2010). https://doi.org/10.1063/1.3337640

    Article  CAS  Google Scholar 

  4. H. Saruyama, M. Oogane, Y. Kurimoto, H. Naganuma, Y. Ando, Fabrication of L10-ordered MnAl films for observation of tunnel magnetoresistance effect. Jpn. J. Appl. Phys. 1 52(6R), 063003 (2013). https://doi.org/10.7567/JJAP.52.063003

    Article  CAS  Google Scholar 

  5. H. Kono, On the ferromagnetic phase in manganese–aluminum system. J. Phys. Soc. Jpn 13(12), 1444–1451 (1958). https://doi.org/10.1143/JPSJ.13.1444

    Article  CAS  Google Scholar 

  6. F. Jiménez-Villacorta, J.L. Marion, T. Sepehrifar, M. Daniil, M.A. Willard, L.H. Lewis, Exchange anisotropy in the nanostructured MnAl system. Appl. Phys. Lett. 100, 112408 (2012). https://doi.org/10.1063/1.3695153

    Article  CAS  Google Scholar 

  7. H. Khanduri, M.C. Dimri, P. Kumar, S. Chaudhary, K. Anand, R.P. Pant, Structural, magnetic and magneto-optical studies of Mn/Al bilayer thin films on GaAs substrates. RSC Adv. 9, 41764 (2019). https://doi.org/10.1039/C9RA09272B

    Article  CAS  Google Scholar 

  8. C. Navio, M. Villanueva, E. Céspedes, F. Mompéan, M. Garcia-Hernandez, J. Camarero, A. Bollero, Ultrathin films of L10–MnAl on GaAs (001): a hard magnetic MnAl layer onto a soft Mn–Ga–As–Al interface. APL Mater. 6, 101109 (2018). https://doi.org/10.1063/1.5050852

    Article  CAS  Google Scholar 

  9. S. Kumar, R.S. Chauhan, S.A. Khan, W. Bolse, D.K. Avasthi, Swift heavy ion induced mixing in metal/metal system. Nucl. Instrum. Methods Phys. Res. B 244, 194–197 (2006). https://doi.org/10.1016/j.nimb.2005.11.054

    Article  CAS  Google Scholar 

  10. T. Weber, K.-P. Lieb, Ion irradiation induced atomic transport and phase formation in the system nickel–aluminum. J. Appl. Phys. 73(7), 3499 (1993). https://doi.org/10.1063/1.352955

    Article  CAS  Google Scholar 

  11. F. Shi, T. Weber, W. Boise, K.-P. Lieb, Ion-beam-induced atomic transport and phase formation in the system nickel/antimony. Appl. Phys. A 57, 343–351 (1993). https://doi.org/10.1007/BF00332288

    Article  Google Scholar 

  12. M. Uhrmacher, P. Wodniecki, F. Shi, T. Weber, K.-P. Lieb, Ion-beam-induced atomic transport and phase formation in the system nickel/antimony. Appl. Phys. A 57, 353–361 (1993). https://doi.org/10.1007/BF00332289

    Article  Google Scholar 

  13. M. Kumar, R.K. Pandey, S. Pathak, V. Panwar, S. Ojha, T. Kumar, R. Kumar, Surface engineering of Pt thin films by low energy heavy ion irradiation. Appl. Surf. Sci. 540, 148338 (2021). https://doi.org/10.1016/j.apsusc.2020.148338

    Article  CAS  Google Scholar 

  14. H. Khanduri, S.A. Khan, S.K. Srivastava, I. Sulania, M. Chandra, J. Link, R. Stern, D.K. Avasthi, Irradiation induced enhancement of ferromagnetic τ-phase in MnAl alloy thin films on Si substrate. Mater. Res. Express 6, 056405 (2019). https://doi.org/10.1088/2053-1591/ab005a

    Article  CAS  Google Scholar 

  15. N. Anuniwat, Y. Cui, S.A. Wolf, J. Lu, B.D. Weaver, Recovery of the chemical ordering in L10 MnAl epitaxial thin films irradiated by 2 MeV protons. Appl. Phys. Lett. 102, 102406 (2013). https://doi.org/10.1063/1.4794804

    Article  CAS  Google Scholar 

  16. C.H. Lai, C.-H. Yang, C.C. Chiang, Ion-irradiation-induced direct ordering of L10 FePt phase. Appl. Phys. Lett. 83, 4550 (2003). https://doi.org/10.1063/1.1631391

    Article  CAS  Google Scholar 

  17. H. Khanduri, S.A. Khan, S.K. Srivastava, J. Link, R. Stern, D.K. Avasthi, Tailoring of magnetic properties of MnAl thin films by protons irradiation. AIP Conf. Proc. 1942, 130010 (2018). https://doi.org/10.1063/1.5029080

    Article  CAS  Google Scholar 

  18. F.A. Mir, K.M. Batoo, Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO2 thin films. Appl. Phys. A 122, 418 (2016). https://doi.org/10.1007/s00339-016-9948-3

    Article  CAS  Google Scholar 

  19. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, vol. 1 (Pergamon Press, New York, 1985). https://doi.org/10.1007/978-1-4615-8103-13

    Book  Google Scholar 

  20. Y.T. Cheng, Thermodynamic and fractal geometric aspects of ion–solid interactions. Mater. Sci. Rep. 5, 45 (1990). https://doi.org/10.1016/S0920-2307(05)80007-6

    Article  Google Scholar 

  21. W. Bolse, B. Schattat, Atomic mixing in thin film system by swift heavy ions. Nucl. Instrum. Methods Phys. Res. B 190, 173–176 (2002). https://doi.org/10.1016/S0168-583X(01)01225-3

    Article  CAS  Google Scholar 

  22. R.L. Fleisher, P.B. Price, R.M. Walker, Nuclear Tracks in Solids (University of California Press, 1975), p. 1. https://doi.org/10.1180/minmag.1978.042.322.40

  23. M. Toulemonde, E. Paumier, C. Dufour, Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defect Solids 126, 201–206 (1993). https://doi.org/10.1080/10420159308219709

    Article  CAS  Google Scholar 

  24. Y. Kido, N. Suzuki, J. Kawamato, Formation of ferromagnetic MnAl layers by ion beam mixing. Jpn. J. Appl. Phys. 26, L1900–L1902 (1987). https://doi.org/10.1143/JJAP.26.L1900

    Article  CAS  Google Scholar 

  25. Y. Kido, N. Suzuki, J.-I. Kawamato, Ion beam mixing of Al/Mn multilayers. Nucl. Instrum. Methods B 33, 681–684 (1988). https://doi.org/10.1016/0168-583X(88)90659-3

    Article  Google Scholar 

  26. Y. Kido, T. Noritake, J.-I. Kawamato, Metastable phase formation by ion beam mixing for the Al–Mn system. Jpn. J. Appl. Phys. 27, 1181–1189 (1988). https://doi.org/10.1143/JJAP.27.1181

    Article  CAS  Google Scholar 

  27. D. Pratap, V. Kumar, A. Jain, A. Gupta, S. Kumar, I. Sulania, A. Tripathi, R.S. Chauhan, Investigation of ion beam mixing threshold value in Mn/Si system using swift heavy ions. Radiat. Eff. Defects Solids 168, 607–614 (2013). https://doi.org/10.1080/10420150.2013.798322

    Article  CAS  Google Scholar 

  28. L.R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Methods Phys. Res. B 9, 344–351 (1985). https://doi.org/10.1016/0168-583X(85)90762-1

    Article  Google Scholar 

  29. H. Khanduri, S.A. Khan, M.C. Dimri, J. Link, R. Stern, I. Sulania, D.K. Avasthi, Perpendicularly magnetized ferromagnetism in Mn/Al bilayer thin films on Si substrates induced by temperature dependent ion beam mixing. Phys. Scr. 96, 105806 (2021). https://doi.org/10.1088/1402-4896/ac119b

    Article  Google Scholar 

  30. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM: The Stopping and Range of Ions in Matter (SRIM, Chester, MD, 2008). https://lib.ugent.be/catalog/rug01:001467757

  31. C.O. Ayieko, R.J. Musembi, A.A. Ogacho, B.O. Aduda, B.M. Muthoka, P.K. Jain, Controlled texturing of aluminum sheet for solar energy applications. Adv. Mater. Phys. Chem. 5, 458–466 (2015). https://doi.org/10.4236/ampc.2015.511046

    Article  CAS  Google Scholar 

  32. A. Chaturvedi, R. Yaqub, Ian Baker, A comparison of –MnAl particulates produced via different routes. J. Phys. Condens. Matter 26, 064201 (2014). https://doi.org/10.1088/0953-8984/26/6/064201

    Article  CAS  Google Scholar 

  33. S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, M.F. Vieira, Intermixing in Ni/Al multilayer thin films. Microsc. Microanal. 15(S3), 75–76 (2009). https://doi.org/10.1017/S1431927609990833

    Article  CAS  Google Scholar 

  34. C.Y. Duan, X.P. Qiu, B. Ma, Z.Z. Zhang, Q.Y. Jin, The structural and magnetic properties of –MnAl films prepared by Mn/Al multilayers deposition plus annealing. Mater. Sci. Eng. B 162, 185–188 (2009). https://doi.org/10.1016/j.mseb.2009.04.005

    Article  CAS  Google Scholar 

  35. S. Zhao, T. Hozumi, P. LeClair, G. Mankey, T. Suzuki, Magnetic anisotropy of τ-MnAl thin films. IEEE Trans. Magn. 51(11), 1–4 (2015). https://doi.org/10.1109/TMAG.2015.2436059

    Article  Google Scholar 

  36. G.H. Vineyard, Thermal spikes and activated processes. Radiat. Eff. 29, 245–248 (1976). https://doi.org/10.1080/00337577608233050

    Article  CAS  Google Scholar 

  37. J. Ward, S. Middleburgh, P. Frankel, M. Topping, A. Garner, D. Stewart, M.W. Barsoum, M. Preuss, Crystallographic evolution of MAX phases in proton irradiating environments. J. Nucl. Mater. 502, 220–227 (2018). https://doi.org/10.1016/j.jnucmat.2018.02.008

    Article  CAS  Google Scholar 

  38. P.K. Das, R. Biswal, H. Rath, D. Kabiraj, S.A. Khan, R.C. Meena, V. Sathe, N.C. Mishra, P. Mallick, Effect of 120 MeV Ag ion irradiation on the structural and electrical properties of NiO/ZnO heterojunction. Mater. Res. Express 6, 126449 (2019). https://doi.org/10.1088/2053-1591/ab6930

    Article  CAS  Google Scholar 

  39. A.J.J. Koch, P. Hokkeling, M.G. Steeg, K.J. Vos, New material for permanent magnets on a base of Mn and Al. J. Appl. Phys. 31, 75S (1960). https://doi.org/10.1063/1.1984610

    Article  CAS  Google Scholar 

  40. L.-J. Zhu, S.-H. Nie, J.-H. Zhao, Recent progress in perpendicularly magnetized Mn-based binary alloy films. Chin. Phys. B 22, 118505 (2013). https://doi.org/10.1088/1674-1056/22/11/118505

    Article  CAS  Google Scholar 

  41. C. Kim, W. Yoo, H.-W. Bang, S. Lee, Y.C. Park, Y.H. Lee, J. Choi, Y. Jo, K. Lee, M.-H. Jung, Highly reduced saturation magnetization in epitaxially grown ferrimagnetic Heusler thin films. ACS Omega 4, 16578–16584 (2019). https://doi.org/10.1021/acsomega.9b02369

    Article  CAS  Google Scholar 

  42. H.A. Khawal, B.N. Dole, A study of the 160 MeV Ni7+ swift heavy ion irradiation effect of defect creation and shifting of the phonon modes on MnxZn1−xO thin films. RSC Adv. 7, 34736–34745 (2017). https://doi.org/10.1039/c7ra01809f

    Article  CAS  Google Scholar 

  43. V.V. Lider, Precise determination of crystal lattice parameters. Phys. Uspekhi 63(9), 907–928 (2020). https://doi.org/10.3367/UFNe.2019.07.038599

    Article  CAS  Google Scholar 

  44. D. Bowden, J. Ward, S.S. Middleburgh, M. de Shubeita, E. Zapata-Solvas, T. Lapauw, J. Vleugels, K. Lambrinou, W.E. Lee, M. Preuss, P. Frankel, The stability of irradiation-induced defects in Zr3AlC2, Nb4AlC3 and (Zr0.5, Ti0.5)3AlC2 MAX phase-based ceramics. Acta Mater. 183, 24–35 (2020). https://doi.org/10.1016/j.actamat.2019.10.049

    Article  CAS  Google Scholar 

  45. S. Thomas, H. Thomas, D.K. Avasthi, A. Tripathi, R.V. Ramanujan, M.R. Anantharaman, Swift heavy ion induced surface modification for tailoring coercivity in Fe–Ni based amorphous thin films. J. Appl. Phys. 105, 033910 (2009). https://doi.org/10.1063/1.3075581

    Article  CAS  Google Scholar 

  46. S.K. Srivastava, D.K. Avasthi, W. Assmann, Z.G. Wang, H. Kucal, E. Jacquet, H.D. Carstanjen, M. Toulemonde, Test of the hypothesis of transient molten state diffusion for swift-heavy-ion induced mixing. Phys. Rev. B 71, 193405 (2005). https://doi.org/10.1103/PhysRevB.71.193405

    Article  CAS  Google Scholar 

  47. Z.G. Wang, C. Dufour, S. Euphrasie, M. Toulemonde, Electronic thermal spike effects in intermixing of bilayers induced by swift heavy ions. Nucl. Instrum. Methods Phys. Res. B 209, 194 (2003). https://doi.org/10.1016/S0168-583X(02)02028-1

    Article  CAS  Google Scholar 

  48. K. Zhang, K.P. Lieb, V. Milinovic, P.K. Sahoo, Swift heavy ion irradiation of a-Si/Fe/c-Si trilayers. J. Appl. Phys. 100, 053501 (2006). https://doi.org/10.1063/1.2335984

    Article  CAS  Google Scholar 

  49. S.E. Shirsath, X. Liu, Y. Yasukawa, S. Li, A. Morisako, Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6, 30074 (2016). https://doi.org/10.1038/srep30074

    Article  CAS  Google Scholar 

  50. G. Vilela, H. Chi, G. Stephen, C. Settens, P. Zhou, Y. Ou, D. Suri, D. Heiman, J.S. Moodera, Strain-tuned magnetic anisotropy in sputtered thulium iron garnet ultrathin films and TIG/Au/TIG valve structures. J. Appl. Phys. 127, 115302 (2020). https://doi.org/10.1063/1.5135012

    Article  CAS  Google Scholar 

  51. M.R. Gauna, M.S. Conconi, S. Gomez, G. Suarez, E.F. Aglietti, N.M. Rendtorff, Monoclinic-tetragonal zirconia quantification of commercial nanopowder mixtures by XRD and DTA. Ceramics Silik. 59, 318–325 (2015)

    CAS  Google Scholar 

  52. E.A. Eklund, E.J. Snyder, R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphite surfaces using the scanning tunneling microscope. Surf. Sci. 285, 157–180 (1993). https://doi.org/10.1016/0039-6028(93)90427-L

    Article  CAS  Google Scholar 

  53. A.H. Ramezani, M.R. Hantehzadeh, M. Ghoranneviss, E. Darabi, Structural modification of tantalum crystal induced by nitrogen ion implantation. Bull. Mater. Sci. Indian Acad. Sci. 39, 633–640 (2016). https://doi.org/10.1007/s12034-016-1212-0

    Article  CAS  Google Scholar 

  54. M. Bala, C. Pannu, S. Gupta, T.S. Tripathi, S.K. Tripathi, K. Asokan, D.K. Avasthi, Phase evolution and electrical properties of Co–Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing. Phys. Chem. Chem. Phys. 17, 24427 (2015). https://doi.org/10.1039/C5CP03360H

    Article  CAS  Google Scholar 

  55. N. Agrawal, M. Sarkar, C.J. Panchal, Study of annealing and irradiation effect in Sb–Se bi-layer thin film. Invertis J. Renew. Energy 4, 121–126 (2014). https://www.academia.edu/32763201/Study_of_Annealing_and_Irradiation_Effect_in_Sb-Se_Bi-Layer_Thin_Film

  56. Z.S. Khalifa, Grain size reduction on nanostructured TiO2 thin films due to annealing. RSC Adv. 7, 30295 (2017). https://doi.org/10.1039/c7ra00706j

    Article  CAS  Google Scholar 

  57. Y. Hirayama, T. Takeuchi, M. Futamoto, On the origin of ferromagnetism in MnAl multilayered films. J. Appl. Phys. 73, 1348 (1993). https://doi.org/10.1063/1.353254

    Article  CAS  Google Scholar 

  58. R.K. Kotnala, J. Shah, Chapter 4—ferrite materials: nano to spintronics regime, in Handbook of Magnetic Materials, vol. 23 (2015), pp. 291–379. https://doi.org/10.1016/B978-0-444-63528-0.00004-8

  59. U. Lagerqvist, P. Svedlindh, K. Gunnarsson, J. Lu, L. Hultman, M. Ottosson, A. Poh, Morphology effects on exchange anisotropy in Co–CoO nanocomposite films. Thin Solid Films 576, 11–18 (2015). https://doi.org/10.1016/j.tsf.2014.11.064

    Article  CAS  Google Scholar 

  60. K. Dong, X. Cheng, W. Cheng, S. Chen, X. Yang, Fabrication and magnetic properties of Ag/FePt thin films. Mater. Manuf. Process. 27, 1160–1163 (2012). https://doi.org/10.1080/10426914.2012.663152

    Article  CAS  Google Scholar 

  61. B. Do, H. Awano, Enhanced perpendicular coercivity of ultrathin perpendicularly magnetized Tb–Fe–Co films on silicon substrates using a thin Pt underlayer. J. Sci. Adv. Mater. Dev. 1, 57–60 (2016). https://doi.org/10.1016/j.jsamd.2016.03.001

    Article  Google Scholar 

  62. S. Fukami, T. Suzuki, N. Ohshima, K. Nagahara, N. Ishiwata, Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 07E718 (2008). https://doi.org/10.1063/1.2830964

    Article  CAS  Google Scholar 

  63. T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, T. Ono, Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nat. Mater. 10, 194 (2011). https://doi.org/10.1038/nmat2961

    Article  CAS  Google Scholar 

  64. A. Markou, J.M. Taylor, A. Kalache, P. Werner, S.S.P. Parkin, C. Felser, Noncollinear antiferromagnetic Mn3Sn films. Phys. Rev. Mater. 2, 051001(R) (2018). https://doi.org/10.1103/PhysRevMaterials.2.051001

    Article  Google Scholar 

  65. D. Navas, J. Torrejon, F. Beron, C. Redondo, F. Batallan, B.P. Toperverg, A. Devishvili, B. Sierra, F. Castano, K.R. Pirota, C.A. Ross, Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies. N. J. Phys. 14, 113001 (2012). https://doi.org/10.1088/1367-2630/14/11/113001

    Article  CAS  Google Scholar 

  66. M. Sakamaki, K. Amemiya, M.O. Liedke, J. Fassbender, P. Mazalski, I. Sveklo, A. Maziewski, Perpendicular magnetic anisotropy in a Pt/Co/Pt ultrathin film arising from a lattice distortion induced by ion irradiation. Phys. Rev. B 86, 024418 (2012). https://doi.org/10.1103/PhysRevB.86.024418

    Article  CAS  Google Scholar 

  67. P. Mazalski, Z. Kurant, A. Maziewski, M.O. Liedke, J. Fassbender, L.T. Baczewski, A. Wawro, Ion irradiation induced enhancement of out-of-plane magnetic anisotropy in ultrathin Co films. J. Appl. Phys. 113, 17C109 (2013). https://doi.org/10.1063/1.4798805

    Article  CAS  Google Scholar 

  68. J. Kasiuk, J. Fedotov, J. Przewoźnik, C. Kapusta, V. Skuratov, I. Svitov, V. Bondariev, T.N. Kołtunowicz, Ion irradiation of oxidized FeCoZr–CaF2 nanocomposite films for perpendicular magnetic anisotropy enhancement. Acta Phys. Pol. A 132, 206–220 (2017). https://doi.org/10.12693/APhysPolA.132.206

    Article  CAS  Google Scholar 

  69. R. Nongjai, S. Khan, H. Ahmed, I. Khan, S. Annapoorni, S. Gautam, H.-J. Lin, F.-H. Chang, K.H. Chae, K. Asokan, Modification of magnetic anisotropy induced by swift heavy ion irradiation in cobalt ferrite thin films. J. Magn. Magn. Mater. 394, 432–438 (2015). https://doi.org/10.1016/j.jmmm.2015.06.080

    Article  CAS  Google Scholar 

  70. N.M. Dempsey, X.L. Rao, J.M.D. Coey, J.P. Nozières, M. Ghidini, B. Gervais, Coercive Sm2Fe17N3: a model pinning system created by heavy ion irradiation. J. Appl. Phys. 83, 6902 (1998). https://doi.org/10.1063/1.367563

    Article  CAS  Google Scholar 

  71. N.M. Dempsey, M. Ghidini, J.P. Nozières, P.A.I. Smith, B. Gervais, J.M.D. Coey, Magnetic hardening of Sm2Fe17N3 by radiation damage. Phys. Rev. Lett. 81, 5652 (1998). https://doi.org/10.1103/PhysRevLett.81.5652

    Article  CAS  Google Scholar 

  72. D.T. Ngo, Z.L. Meng, T. Tahmasebi, X. Yu, E. Thoeng, L.H. Yeo, A. Rusydi, G.C. Han, K.-L. Teo, Interfacial tuning of perpendicular magnetic anisotropy and spin magnetic moment in CoFe/Pd multilayers. J. Magn. Magn. Mater. 350, 42–46 (2014). https://doi.org/10.1016/j.jmmm.2013.08.063

    Article  CAS  Google Scholar 

  73. S. Fukami, T. Suzuki, Y. Nakatani, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, H. Ohno, Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl. Phys. Lett. 98, 082504 (2011). https://doi.org/10.1063/1.3558917

    Article  CAS  Google Scholar 

  74. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, D. Sellmyer, Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 158, 118–137 (2018). https://doi.org/10.1016/j.actamat.2018.07.049

    Article  CAS  Google Scholar 

  75. L. Zhu, L. Brandt, J. Zhao, Engineering the polar magneto-optical Kerr effect in strongly strained L10–MnAl films. J. Phys. D 49, 415001 (2016). https://doi.org/10.1088/0022-3727/49/41/415001

    Article  CAS  Google Scholar 

  76. Y. Hwang, S. Choi, J. Choi, S. Cho, Induced high-temperature ferromagnetism by structural phase transitions in strained antiferromagnetic γ-Fe50Mn50 epitaxial films. Sci. Rep. 9, 3669 (2019). https://doi.org/10.1038/s41598-019-39949-x

    Article  CAS  Google Scholar 

  77. L. Kerkache, A. Layadi, M. Hemmous, A. Guittoum, M. Mebarki, N. Tiercelin, A. Klimov, V. Preobrazhensky, P. Pernod, MOKE magnetometer studies of evaporated Ni and Ni/Cu thin films onto different substrates. SPIN 09, 1950006 (2019). https://doi.org/10.1142/S2010324719500061

    Article  CAS  Google Scholar 

  78. T. Nakamura, H. Tanaka, T. Horiuchi, T. Yamada, Y. Takemura, Surface magnetization reversal of Wiegand wire measured by the magneto-optical Kerr effect. Materials 14, 5417 (2021). https://doi.org/10.3390/ma14185417

    Article  CAS  Google Scholar 

  79. A. Hendrych, O. Zivotský, Y. Jirásková, I. Matko, The surface and bulk magnetic properties of Fe–Al alloys. Acta Phys. Pol. A 126, 58–59 (2014). https://doi.org/10.12693/APhysPolA.126.58

    Article  CAS  Google Scholar 

  80. A.L. Balk, N.H. Sung, S.M. Thomas, P.F.S. Rosa, R.D. McDonald, J.D. Thompson, E.D. Bauer, F. Ronning, S.A. Crooker, Comparing the anomalous Hall effect and the magneto-optical Kerr effect through antiferromagnetic phase transitions in Mn3Sn. Appl. Phys. Lett. 114, 032401 (2019). https://doi.org/10.1063/1.5066557

    Article  CAS  Google Scholar 

  81. J.A.C. Bland, M.J. Padgett, R.J. Butcher, N. Bett, An intensity-stabilised He–Ne laser for measuring small magneto-optic Kerr rotations from ferromagnetic films. J. Phys. E 22, 308 (1989). https://doi.org/10.1088/0022-3735/22/5/008

    Article  CAS  Google Scholar 

  82. H. Prima-Garcia, E. Coronado, J.P. Prieto-Ruiz, F.M. Romero, Tailoring magnetic properties of electrodeposited thin films of the molecule-based magnet Cr5.5(CN)12 11.5H2O. Nanoscale Res. Lett. 7(232), 1–4 (2012). https://doi.org/10.1186/1556-276X-7-232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director CSIR-NPL, Delhi for his encouragement. The authors express their sincere thanks to the Pelletron Accelerator Group, IUAC, New Delhi, and the staff of MCX Beamline, Synchrotron, Trieste, Italy for their support. The authors are thankful for the financial support under the Indo-Italian Programme of Cooperation for performing the experimental work in MCX Beamline, Synchrotron, Trieste, Italy.

Funding

H. Khanduri acknowledges the Department of Science and Technology, Government of India, for the DST-INSPIRE Faculty Award (DST/INSPIRE/04/2017/002826). J. Link and R. Stern are supported by the European Regional Development Fund Project (TK134) and the Estonian Research Agency Project (PRG4 and IUT23-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Khanduri or Mukesh C. Dimri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanduri, H., Dimri, M.C., Khan, S.A. et al. Modifications in ferromagnetic properties of MnAl bilayer thin films induced by swift heavy ion irradiation. Journal of Materials Research 37, 2468–2482 (2022). https://doi.org/10.1557/s43578-022-00667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00667-2

Keywords

Navigation