Skip to main content

Advances in titanium bio-implants: Alloy design, surface engineering and manufacturing processes

This is a preview of subscription content, access via your institution.

Figure 1

Data availability

The data are available from the corresponding authors of the article on reasonable request.

References

  1. H. Eskandari, H.R. Lashgari, S. Zangeneh et al., Microstructural characterization and mechanical properties of SLM-printed Ti–6Al–4V alloy: effect of build orientation. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-021-00468-z

    Article  Google Scholar 

  2. N. Erwin, D. Sur, G.B. Basim, Remediation of machining medium effect on biocompatibility of titanium-based dental implants by chemical mechanical nano-structuring. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00553-x

    Article  Google Scholar 

  3. A.H. Jabbari, F. Farahmand, Advances in Titanium Bio-Implants (Sidhu). J. Mater. Res. (2022) (Accepted)

  4. L. Klinge, C. Siemers, L. Kluy et al., Nanostructured Ti–13Nb–13Zr for dental implant applications produced by severe plastic deformation. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00587-1

    Article  Google Scholar 

  5. F. Haase, C. Siemers, J. Rösler, Two novel titanium alloys for medical applications: thermo-mechanical treatment, mechanical properties, and fracture analysis. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00605-2

    Article  Google Scholar 

  6. N. Singh, V. Edachery, M. Rajput et al., Ti6Al7Nb–TiB nanocomposites for ortho-implant applications. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00578-2

    Article  Google Scholar 

  7. M. Mohammadtaheri, M. Bozorg, A. Yazdani et al., Fabrication of Ti–Al2O3–HA composites by spark plasma sintering and its properties for medical applications. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00561-x

    Article  Google Scholar 

  8. M.K. Gouda, S.A. Salman, S. Ebied et al., Biocompatibility and corrosion resistance of low-cost Ti–14Mn–Zr alloys. J. Mater. Res. 36, 4883–4893 (2021). https://doi.org/10.1557/s43578-021-00441-w

    CAS  Article  Google Scholar 

  9. N.B. Abdullah, D. Miyazaki, E. Yamamoto et al., Effect of low modulus titanium plate fixation on rabbit femur bone healing. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00616-z

    Article  Google Scholar 

  10. O. Yigit, B. Dikici, M. Kaseem et al., Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: morphological and electrochemical insights. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-021-00470-5

    Article  Google Scholar 

  11. A. Jaafar, C. Schimpf, M. Mandel et al., Sol–gel derived hydroxyapatite coating on titanium implants: optimization of sol–gel process and engineering the interface. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00550-0

    Article  Google Scholar 

  12. J. Singh, S.S. Chatha, H. Singh, In vitro assessment of plasma-sprayed reinforced hydroxyapatite coatings deposited on Ti6Al4V alloy for bio-implant applications. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00549-7

    Article  Google Scholar 

  13. P.R. Chowdhury, S. Vahabzadeh, Deposition of magnesium on surface-modified titanium for biomedical applications. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00611-4

    Article  Google Scholar 

  14. F.J. Gil, R.A. Pérez, J. Olmos et al., The effect of using Al2O3 and TiO2 in sandblasting of titanium dental implants. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00534-0

    Article  Google Scholar 

  15. B.B. Straumal, A.S. Gornakova, M.V. Kiselevskiy et al., Optimal surface roughness of Ti6Al4V alloy for the adhesion of cells with osteogenic potential. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00600-7

    Article  Google Scholar 

  16. Y.C. Liu, T.W. Xu, B.Q. Sun et al., Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00626-x

    Article  Google Scholar 

  17. M. Singh, A.S. Gill, P.K. Deol et al., Drug eluting titanium implants for localised drug delivery. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00609-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarabjeet Singh Sidhu.

Ethics declarations

Conflict of interest

The editors declare no conflict of interest.

Additional information

Sarabjeet Singh Sidhu, Mohamed Abdel-Hady Gepreel, and Marjan Bahraminasab were guest editors of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sidhu, S.S., Gepreel, M.AH. & Bahraminasab, M. Advances in titanium bio-implants: Alloy design, surface engineering and manufacturing processes. Journal of Materials Research 37, 2487–2490 (2022). https://doi.org/10.1557/s43578-022-00661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00661-8

Keywords

  • Titanium
  • Implants
  • Surface engineering
  • Biocompatibility
  • Coatings